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Abstract

This paper presents new boundary element formulation for the shear deformable plate bending problems based on considering the

relative displacement quantities. This can be done by subtracting the rigid body integral equations from the traditional displacement

integral equations. The result is a new set of regularized integral equations, which could be used without any special integration

considerations to compute the boundary generalized displacements. Using suitable constitutive relationships, new integral equations for

computing boundary stress resultants are formulated. The behaviour of such equations are studied at smooth boundary points. Unlike

the traditional formulation which contains kernels of O(1/r2), the newly derived equations are of O(1/r), therefore they can be used to

compute boundary values with the traditional quadratic continuous boundary elements. The main advantage of the present formulation

is that it can be used to compute values anywhere within the plate domain or on the boundary, which gives the boundary element

formulation a practical essence.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The boundary element method (BEM) [1] is a powerful
tool in computational engineering. The method has several
advantages, which make it attractive to be used in practical
engineering. The main challenge for the BEM is how it will
be used to serve in the solution and modelling of practical
problems. The question: ‘‘Whether the BEM will be used in
practice as the case of the finite element method?’’ is
frequently repeated in BEM conferences or research
meetings. In the last 10 years several theoretical BEM
formulations have been implemented inside practical soft-
ware packages (see for example the BEASY [1]). Among
those are applications in fracture mechanics problems,
cathodic protection applications, mechanical engineering,
electro-magnetic applications, geo-technical problems, etc.
The author in Ref. [2] has presented BEM formulation for
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solution of flat slab problems. In Ref. [3], he extended the
formulation to solve building foundation problems. A
serious problem [4,5] always faces the BEM solution is the
near boundary and the boundary values, especially values
for stress resultants (bending moments and shear forces).
Such values are computed in an inaccurate manner in the
vicinity of the boundary due to computation of singular
(and hyper-singular) integrals of O(1/r2). From practical
point of view this problem limits the accurate usage of the
BEM within the engineering community. In addition, any
graphical postprocessor for the results will give wrong
overshooting values near and on the problem boundary.
Moreover the application of the BEM in shape optimiza-
tion problems will be limited; as such applications are
dependent on computing the function derivatives on the
boundaries.
In the literature several research works have been carried

out concerning the plate bending theory (see for example
[4–8]); however, in the next paragraphs only relevant work
is considered. Researchers have considered several techni-
ques to compute the boundary values in boundary
elements. One of those techniques is the computation
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using the hyper-singular integral equations on the bound-
ary [4]. The idea of such technique is to consider the
internal bending moment and shear force integral equa-
tions on the boundary. The final form of this formulation is
a set of integral equations having singularity of O(1/r2).
Despite the high accuracy of this technique, it is
computationally expensive to compute. Moreover, fully
discontinuous boundary elements have to be used to satisfy
the continuity requirements (C1) imposed by the formula-
tion.

An alternative technique, which was considered to
compute boundary values, is called the shape function
derivative [5], which compute the missing tangential
boundary value using the displacement derivative obtained
from the assumed distribution of the boundary displace-
ments (i.e. using the shape function derivative). Such a
technique is approximate and needs fine boundary
discretization together with using higher order elements
(at least quadratic, in order to have linear distribution for
the strains). Both of the former techniques were considered
for elasticity problems by Aliabadi and Rooke [9] and for
plate bending problems by Rashed [10].

In 1988, Kawahara and Kisu [11] derived new formula-
tion for two-dimensional elasticity problems by formulat-
ing the integral equation in terms of the relative
displacement quantities. The main advantage of this
formulation is the new displacement integral equation
being weakly singular and the internal stress integral
equation having singularity of O(1/r). Therefore such new
integral equations can compute the boundary values easily.
In 1992, Li and Obata [12] extended the formulation of
Ref. [11] to three-dimensional problems. Since that time, to
the author’s best knowledge, such technique has never been
applied to plate bending problems.

The purpose of this paper is to formulate the boundary
integral equations for the shear deformable plate bending
problems using the relative displacement quantities. This
can be done by subtracting the rigid body integral
equations from the traditional generalized displacement
integral equations. Unlike elasticity problems, the rigid
body displacements for plate bending problems generate
coupled displacements. Therefore, it is expected that the
present formulation will be more difficult and complicated
compared to the elasticity formulations in Refs [11,12].
However, such complexity cannot be considered as
disadvantage as the present formulation will be offered to
practical design engineers as black box. Hence, new
integral equations for computing boundary stress resul-
tants are formulated to compute boundary values with the
traditional quadratic continuous boundary elements. Ex-
ample problem is presented to show the efficiency and the
accuracy of the present formulation.

2. Traditional BEM for plate bending problems

In this section the boundary integral equation for thick
plates according to Reissner [13] will be reviewed. Indicial
notation will be used, in which Roman indices will vary
from 1 to 3 and Greek indices will vary from 1 to 2. The
stress-resultant generalized displacement relationships can
be written as follows [13]:

MabðxÞ ¼ D
1� n
2

ua;bðxÞ þ ub;aðxÞ þ
2n

1� n
ug;gðxÞdab

� �

þ
nq

ð1� nÞl2
dab, ð1Þ

Q3bðxÞ ¼ D
1� n
2

l2ðubðxÞ þ u3;bðxÞÞ, (2)

where Mab(x) and Q3b(x) are the bending moments and
shear force stress resultants, respectively, at point x, q is the
uniform domain loading on the plate domain, D is the plate
modulus of rigidity, l is the shear factor, n is the Poisson’s
ratio, ua denotes the rotation in two direction, u3 denotes
the deflection, the comma notation denotes derivatives
according to the indicial notations and the symbol dab
denotes the identity matrix. The corresponding integral
equation formulation for internal point x can be formed as
follows [8]:

uiðxÞ þ
Z
GðxÞ

Tijðx; xÞujðxÞdGðxÞ

¼

Z
GðxÞ

Uijðx; xÞtjðxÞdGðxÞ

þ

Z
GðxÞ

V i;nðx; xÞ �
n

ð1� nÞl2
Uinðx; xÞ

� �
q dGðxÞ, ð3Þ

where Uij(x,x), Tij(x,x), Vi(x,x) are the relevant fundamen-
tal solution kernels [8]. The notation (,n) denotes the
derivative with respect to the normal component at the
boundary point x, whereas the subscript (n) denotes the
normal component of the kernel. The boundary general-
ized displacements and tractions are denoted by uj(x) and
tj(x), respectively. Taking the point x to the plate boundary
G(x) it gives [8]

1

2
uiðxÞ þ CPV

Z
GðxÞ

Tijðx; xÞujðxÞdGðxÞ

¼

Z
GðxÞ

Uijðx; xÞtjðxÞdGðxÞ

þ

Z
GðxÞ

V i;nðx; xÞ �
n

ð1� nÞl2
Uiaðx; xÞ

� �
qdGðxÞ, ð4Þ

where the symbol CPV denotes that the integral is
interpreted in Cauchy principal value sense.
3. Rigid body integral equations

Considering the rigid body motion of the plate, all
boundary tractions are set to be zeros (tj(x) ¼ 0, j ¼ 1, 3).
Three cases have to be considered:

when u1ðxÞ ¼ A then u1ðxÞ ¼ A; u2ðxÞ ¼ 0; and

u3ðxÞ ¼ ½x1ðxÞ � x1ðxÞ�A, ð5Þ
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Fig. 1. The point x on smooth boundary.
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when u2ðxÞ ¼ B then u1ðxÞ ¼ 0; u2ðxÞ ¼ B; and

u3ðxÞ ¼ ½x2ðxÞ � x2ðxÞ�B, ð6Þ

when u3ðxÞ ¼ C then u1ðxÞ ¼ 0; u2ðxÞ ¼ 0; and

u3ðxÞ ¼ C, ð7Þ

where, A, B, C are arbitrary constants, and x1, x2 are the
Cartesian coordinates. Recalling Eqs. (3) and (4),
Eqs. (5)–(7) can be written in the following form
(considering q ¼ 0):

uiðxÞ þ
Z
GðxÞ

Tijðx; xÞDjkðx; xÞukðxÞdGðxÞ ¼ 0

ðx is an internal pointÞ, ð8Þ

1

2
uiðxÞ þ CPV

Z
GðxÞ

Tijðx; xÞDjkðx; xÞukðxÞdGðxÞ ¼ 0

ðx is a boundary pointÞ, ð9Þ

where

Djkðx; xÞ ¼

1 0 0

0 1 0

x1ðxÞ � x1ðxÞ x2ðxÞ � x2ðxÞ 1

2
64

3
75 (10)

and

ujðxÞ ¼ ujðxÞ ¼

A

B

C

8><
>:

9>=
>; ¼ ujðQÞ, (11)

where Q is any arbitrary boundary or internal point. It has
to be noted that the matrix Djk (which contains variable
quantities that couples the coordinates of the source and
the field points) is the main difference between the elasticity
formulation and the present formulation for the plate
bending problems.

4. Proposed relative displacement formulation

Considering x as internal point, subtracting Eq. (8) from
Eq. (3), and taking into account that the rigid body
generalized displacements are taken at an arbitrary point Q
(recall Eq. (11)), it gives

uiðxÞ � uiðQÞ þ

Z
GðxÞ

Tijðx; xÞðujðxÞ �Djkðx; xÞukðQÞÞdGðxÞ

¼

Z
GðxÞ

Uijðx; xÞtjðxÞdGðxÞ

þ

Z
GðxÞ

Vi;nðx; xÞ �
n

ð1� nÞl2
Uinðx; xÞ

� �
qdGðxÞ. ð12Þ

Eq. (12) is valid for any point Q. If Eq. (12) is considered as
x is taken to the boundary, and considering Fig. 1 with the
following relationships:

r;1 ¼ n1 ¼ cosf, (13)

r;2 ¼ n2 ¼ sinf, (14)

r ¼ � and r;n ¼ 1, (15)
Z
GðxÞ
ð�ÞdGðxÞ ¼ lim

�!0

Z
GðxÞ�G�

ð�ÞdGðxÞ þ
Z
G��

ð�ÞdGðxÞ

" #
,

(16)

Z
G��

ð�Þ dGðxÞ ¼
Z f¼p

f¼0
ð�Þ�df, (17)

where (�) is any integrand. It can be seen that the first term
of the integral on the LHS of Eq. (12) (recall the Tij kernel
is strong singular of O(1/r)) will lead to the well-known 1

2

jump term. Therefore, the following equation can be
written:Z

GðxÞ
Tijðx; xÞujðxÞdGðxÞ

) CPV

Z
GðxÞ

Tijðx; xÞujðxÞdGðxÞ þ
1

2
uiðxÞ. ð18Þ

The matrix Djk can be re-written in the following form
(recall Eq. (10)):

Djkðx; xÞ ¼

1 0 0

0 1 0

0 0 1

2
664

3
775

þ

0 0 0

0 0 0

x1ðxÞ � x1ðxÞ x2ðxÞ � x2ðxÞ 0

2
664

3
775

¼ djk þ ðxkðxÞ � xkðxÞÞdj3, ð19Þ

where x3(x) ¼ x3(x) ¼ 0. Then the second term of the
considered integral on the LHS of Eq. (12) can be written
as follows (after considering the same steps as those for the
first term) to giveZ

GðxÞ
Tijðx; xÞDjkðx; xÞukðQÞdGðxÞ

¼

Z
GðxÞ

Tijðx; xÞðdjk þ ðxkðxÞ � xkðxÞÞdj3ÞukðQÞdGðxÞ

) CPV

Z
GðxÞ

Tijðx; xÞDjkðx; xÞukðQÞdGðxÞ �
1

2
uiðQÞ.

ð20Þ

It has to be noted that the term xk(x)�xk(x) is of O(r)
which will smooth the singular terms in the kernel Tij
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(which is of O(1/r)) leading to zero jump term. Other
integrals in Eq. (12) have weak singular kernels as
integrands, which lead to smooth terms. Therefore, the
final form of Eq. (12) can be written as follows:

1

2
uiðxÞ þ CPV

Z
GðxÞ

Tijðx; xÞðujðxÞ �Djkðx; xÞukðQÞÞdGðxÞ

¼

Z
GðxÞ

Uijðx; xÞtjðxÞdGðxÞ

þ

Z
GðxÞ

Vi;nðx; xÞ �
n

ð1� nÞl2
Uinðx; xÞ

� �
qdGðxÞ

�
1

2
uiðQÞ. ð21Þ

If the point Q is chosen to have the same place as that of x
(i.e. Q ¼ x), the singular terms in the integral in the LHS of
Eq. (21) will vanish as x approaches x. Therefore, Eq. (21)
can be re-written as follows:

uiðxÞ þ
Z
GðxÞ

Tijðx; xÞðujðxÞ � ujðxÞÞdGðxÞ

¼

Z
GðxÞ

Uijðx; xÞtjðxÞdGðxÞ

þ

Z
GðxÞ

Vi;nðx; xÞ �
n

ð1� nÞl2
Uinðx; xÞ

� �
qdGðxÞ. ð22Þ

Eq. (22) can be used, without any special consideration, to
compute boundary generalized displacements at any point
x, as all involved integrals are either smooth or weak
singular.
5. Stress resultant integral equations

In this section, the internal point integral equations for
computing the stress-resultants (bending moments and
shear forces) will be formed based on the proposed relative
quantity formulation in Eqs. (12) and (22). Eq. (12) can be
split into the following two integral equations (one for
rotations and the other for the vertical deflection) as
follows:

uaðxÞ þ
Z
GðxÞ

Tajðx; xÞðujðxÞ �Djkðx; xÞukðQÞÞdGðxÞ

¼

Z
GðxÞ

Uajðx; xÞtjðxÞdGðxÞ þ uaðQÞ

þ

Z
GðxÞ

Va;nðx; xÞ �
n

ð1� nÞl2
Uanðx; xÞ

� �
qdGðxÞ, ð23Þ

u3ðxÞ þ
Z
GðxÞ

T3jðx; xÞðujðxÞ �Djkðx; xÞukðQÞÞdGðxÞ

¼

Z
GðxÞ

U3jðx; xÞtjðxÞdGðxÞ þ u3ðQÞ

þ

Z
GðxÞ

V3;nðx; xÞ �
n

ð1� nÞl2
U3nðx; xÞ

� �
qdGðxÞ. ð24Þ
It has to be noted that choosing uk(Q) ¼ 0 will make the
proposed formulation in Eqs. (23) and (24) approaches the
traditional BEM formulation in Refs. [2,3].
5.1. The bending moment integral equation

Differentiating Eq. (23) w.r.t the coordinates of the
source point (xb(x)), taking into account that the matrix
Djk is not constant (recall Eq. (19)), gives

ua;bðxÞ þ
Z
GðxÞ
½Taj;bðx; xÞðujðxÞ �Djkðx; xÞukðQÞÞ

� Tajðx; xÞDjk;bðx; xÞukðQÞ�dGðxÞ

¼

Z
GðxÞ

Uaj;bðx; xÞtjðxÞdGðxÞ

þ

Z
GðxÞ

V a;bnðx; xÞ �
n

ð1� nÞl2
Uay;bðx; xÞnyðxÞ

� �
� qdGðxÞ, ð25Þ

where

Djk;aðx; xÞ ¼
qDjkðx; xÞ
qxaðxÞ

¼

0 0 0

0 0 0

d1a d2a 1

2
64

3
75 ¼ dkadj3. (26)

Similarly, by changing indices one can easily obtain other
relevant derivatives, such as ub,a(x) and ug,g(x). It has to be
noted that the following terms can be simplified as follows
(recall Eq. (26)):

Tajðx; xÞDjk;bðx; xÞ ¼ Ta3ðx; xÞdkb, (27)

and using suitable expansion, the following simplification
can be also obtained:

Tgjðx; xÞDjk;gðx; xÞ

¼ Tg3ðx; xÞD3k;gðx; xÞ

¼ Tk3ðx; xÞð1� dk3Þ with no summation on k. ð28Þ

The following kernels can be defined:

Uabjðx; xÞ ¼
Dð1� vÞ

2
Uaj;bðx; xÞ þUbj;aðx; xÞ
�

þ
2v

ð1� vÞ
U gj;gðx; xÞdab

�
, ð29Þ

Tabjðx; xÞ ¼
Dð1� vÞ

2
Taj;bðx; xÞ þ Tbj;aðx; xÞ
�

þ
2v

ð1� vÞ
T gj;gðx; xÞdab

�
, ð30Þ

W abðx; xÞ ¼
Dð1� vÞ

2
Va;bnðx; xÞ þ Vb;anðx; xÞ
�

þ
2v

ð1� vÞ
V g;gnðx; xÞdab

�
�

v

ð1� vÞl2
Uabn,

ð31Þ



ARTICLE IN PRESS
Y.F. Rashed / Engineering Analysis with Boundary Elements 32 (2008) 152–161156
Fabkðx; xÞ ¼
Dð1� vÞ

2
ðTa3ðx; xÞdkb þ Tb3ðx; xÞdka þ Tk3ðx; xÞ

� ð1� dk3ÞÞ with no summation on k. ð32Þ

Using suitable algebraic simplifications expression for the
new kernel Fabk(x,x) can be obtained as follows:

Fabkðx; xÞ ¼

DT13ðx; xÞ DvT23ðx; xÞ 0
Dð1�vÞ

2
T23ðx; xÞ

Dð1�vÞ
2

T13ðx; xÞ 0

DvT13ðx; xÞ DT23ðx; xÞ 0

2
64

3
75. (33)

Substituting Eq. (25) and similar derivatives into Eq. (1),
the bending moment stress-resultant integral equation can
be written as follows (after consideration of the definitions
in Eqs. (27)–(32)):

MabðxÞ ¼
Z
GðxÞ

Uabjðx; xÞtjðxÞdGðxÞ

�

Z
GðxÞ

Tabjðx; xÞujðxÞdGðxÞ

þ

Z
GðxÞ
½Tabjðx; xÞDjkðx; xÞ þ Fabkðx; xÞ�dGðxÞ

� �
ukðQÞ

þ q

Z
GðxÞ

W abðx; xÞdGðxÞ þ
v

ð1� vÞl2
qdab. ð34Þ

5.2. The shear force integral equation

Differentiating Eq. (24) w.r.t the coordinates of the
source point (xa(x)), it gives

u3;aðxÞ þ
Z
GðxÞ
½T3j;aðx; xÞðujðxÞ �Djkðx; xÞukðQÞÞ

� T3jðx; xÞDjk;aðx; xÞukðQÞ�dGðxÞ

¼

Z
GðxÞ

U3j;aðx; xÞtjðxÞdGðxÞ

þ

Z
GðxÞ

V 3;anðx; xÞ �
n

ð1� nÞl2
U3y;aðx; xÞnyðxÞ

� �
� qdGðxÞ. ð35Þ

Recalling Eq. (26), it is easy to show that

T3jðx; xÞDjk;aðx; xÞ ¼ T33ðx; xÞdka. (36)

Correspondingly

T3jðx; xÞDjk;aðx; xÞukðQÞ ¼ T33ðx; xÞuaðQÞ. (37)

So Eq. (35) can be re-written in the following form:

u3;aðxÞ þ
Z
GðxÞ
½T3j;aðx; xÞðujðxÞ �Djkðx; xÞukðQÞÞ

� T33ðx; xÞuaðQÞ�dGðxÞ

¼

Z
GðxÞ

U3j;aðx; xÞtjðxÞdGðxÞ

þ

Z
GðxÞ

V 3;anðx; xÞ �
n

ð1� nÞl2
U3y;aðx; xÞnyðxÞ

� �
� qdGðxÞ. ð38Þ
Substituting from Eqs. (23) and (38) into Eq. (2), it gives

Q3aðxÞ

¼
Dð1� vÞ

2
l2

Z
GðxÞ

Uajðx; xÞtjðxÞdGðxÞ
�

�

Z
GðxÞ

Tajðx; xÞujðxÞdGðxÞ

þ

Z
GðxÞ

Tajðx; xÞDjkðx; xÞdGðxÞ
� �

þ uaðQÞ

þ

Z
GðxÞ

U3j;aðx; xÞtjðxÞdGðxÞ

�

Z
GðxÞ

T3j;aðx; xÞujðxÞdGðxÞ

þ

Z
GðxÞ
½T3j;aðx; xÞDjkðx; xÞ þ T33ðx; xÞdka�dGðxÞ

� �
ukðQÞ

þ

Z
GðxÞ

V a;nðx; xÞ �
n

ð1� nÞl2
Uanðx; xÞ

� �
q dGðxÞ

þ

Z
GðxÞ

V3;anðx; xÞ �
n

ð1� nÞl2
U3y;aðx; xÞnyðxÞ

� �

�qdGðxÞ
�
. ð39Þ

The following kernels can be defined:

U3ajðx; xÞ ¼
Dð1� vÞ

2
l2ðUajðx; xÞ þU3j;aðx; xÞÞ, (40)

T3ajðx; xÞ ¼
Dð1� vÞ

2
l2ðTajðx; xÞ þ T3j;aðx; xÞÞ, (41)

W 3bðx; xÞ ¼
Dð1� vÞ

2
l2ðVb;nðx; xÞ þ V3;bnðx; xÞÞ

�
v

ð1� vÞl2
U3bn. ð42Þ

After consideration the definitions in Eqs. (40)–(42), Eq.
(39) can be re-written as follows:

Q3aðxÞ ¼
Z
GðxÞ

U3ajðx; xÞtjðxÞdGðxÞ

�

Z
GðxÞ

T3ajðx; xÞujðxÞdGðxÞ

þ

Z
GðxÞ

T3ajðx; xÞDjkðx; xÞdGðxÞ
� �

ukðQÞ

þ
Dð1� vÞ

2
l2
Z
GðxÞ

T33ðx; xÞdGðxÞ þ 1

� �
uaðQÞ

þ q

Z
GðxÞ

W 3aðx; xÞdGðxÞ. ð43Þ

Both Eqs. (34) and (43) are the relative quantity integral
equation for the bending moment and the shear stress
resultants, respectively, at internal point x. It has to be
noted that choosing uk(Q) ¼ 0 will make the proposed
formulation in Eqs. (34) and (43) approaches the tradi-
tional BEM formulation in Refs. [2,3].
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6. Boundary stress resultant integral equations

In this section, Eqs. (34) and (43) will be discussed as the
point x will move to smooth boundary.

6.1. Bending moment boundary integral equation

Eq. (34) can be expanded in the following form:

MabðxÞ ¼
Z
GðxÞ

Uabgðx; xÞtgðxÞdGðxÞ

þ

Z
GðxÞ

Uab3ðx; xÞt3ðxÞdGðxÞ �
Z
GðxÞ

Tabgðx; xÞ

� ½ugðxÞ �Dgkðx; xÞukðQÞ�dGðxÞ �
Z
GðxÞ

Tab3ðx; xÞ

� ½u3ðxÞ �D3kðx; xÞukðQÞ�dGðxÞ

þ

Z
GðxÞ

F abkðx; xÞdGðxÞ
� �

ukðQÞ

þ q

Z
GðxÞ

W abðx; xÞdGðxÞ þ
v

ð1� vÞl2
qdab,

ð44Þ

which can be symbolized in the following form:

MabðxÞ ¼ I1 þ I2 � I3 � I4 þ I5 þ I6, (45)

where each symbol from Eq. (45) has to match
the corresponding integral in Eq. (44). Now each
integral in Eq. (44) will be considered as x will move to
be a boundary point. Consider Fig. 1 and the relation-
ships in Eqs. (13)–(17) together with suitable Taylor
expansion [4], the following jump terms can be computed.
For the sake of shortening the present paper, some of
these integrals will have the same jump term as those
obtained by the author and his co-workers in Ref. [4],
therefore herein the final results will be given (the inte-
rested reader can refer to Ref. [4] for detailed discussion).
In the paragraphs below, only the new forms of integrals
will be considered in details. Now each integral will be
considered:

I1 ) CPV

Z
GðxÞ

Uabgðx; xÞtgðxÞdGðxÞ

þ
3v� 1

16
MggðxÞdab �

2ðv� 3Þ

16
MabðxÞ, ð46Þ

I2 ) CPV

Z
GðxÞ

Uab3ðx; xÞt3ðxÞdGðxÞ. (47)

Using suitable Taylor expansion the final jump term of the
integral I3 can be obtained as follows (noting that
ua,b(Q) ¼ 0 and Dg3 ¼ 0):

I3 ) HFP

Z
GðxÞ

Tabgðx; xÞ½ugðxÞ �Dgkðx; xÞukðQÞ�dGðxÞ

�
Dð1þ vÞð1� vÞ

16
½ub;aðxÞ þ ua;bðxÞ þ dabug;gðxÞ�,

ð48Þ
where the symbol HFP denotes the following integral will
be interpreted in Hadamard finite part sense.

I4 ) CPV

Z
GðxÞ

Tab3ðx; xÞ½u3ðxÞ �D3kðx; xÞukðQÞ�dGðxÞ,

(49)

I5 )

Z
GðxÞ

Fabkðx; xÞdGðxÞ
� �

ukðQÞ, (50)

I6 ) q� CPV

Z
GðxÞ

W abðx; xÞdGðxÞ

�
vq

ð1� vÞl2
1þ v

4
dab. ð51Þ

Substituting from Eqs. (46)–(51) and simplifying taking
into account the following relationship (recall Eq. (1)):

MggðxÞ ¼ D
1þ n
1� v

ug;g þ
2nq

ð1� nÞl2
. (52)

The final boundary integral equation is

1

2
MabðxÞ ¼ CPV

Z
GðxÞ

Uabgðx; xÞtgðxÞdGðxÞ

þ CPV

Z
GðxÞ

Uab3ðx; xÞt3ðxÞdGðxÞ

�HFP

Z
GðxÞ

Tabgðx; xÞ

� ½ugðxÞ �Dgkðx; xÞukðQÞ�dGðxÞ

� CPV

Z
GðxÞ

Tab3ðx; xÞ

� ½u3ðxÞ �D3kðx; xÞukðQÞ�dGðxÞ

þ

Z
GðxÞ

F abkðx; xÞdGðxÞ
� �

ukðQÞ

þ q� CPV

Z
GðxÞ

W abðx; xÞdGðxÞ

þ
v

ð1� vÞl2
qdab. ð53Þ

The integral equation in Eq. (53) can be used to compute
the bending moment stress resultants at boundary point x.
If the point x is chosen to be Q, Eq. (53) can be re-written
as

1

2
MabðxÞ ¼ CPV

Z
GðxÞ

Uabgðx; xÞtgðxÞdGðxÞ

þ CPV

Z
GðxÞ

Uab3ðx; xÞt3ðxÞdGðxÞ

�

Z
GðxÞ

Tabgðx; xÞ

� ½ugðxÞ �Dgkðx; xÞukðxÞ�dGðxÞ
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�

Z
GðxÞ

Tab3ðx; xÞ

� ½u3ðxÞ �D3kðx; xÞukðxÞ�dGðxÞ

þ

Z
GðxÞ

F abkðx; xÞdGðxÞ
� �

ukðxÞ

þ q� CPV

Z
GðxÞ

W abðx; xÞdGðxÞ

þ
v

ð1� vÞl2
qdab. ð54Þ

It can be seen that all HFP integrals vanish. Therefore, this
integral equation can be used on the boundary without any
special considerations.
6.2. Shear force boundary integral equation

Eq. (43) can be expanded in the following form:

Q3aðxÞ ¼
Z
GðxÞ

U3agðx; xÞtgðxÞdGðxÞ

þ

Z
GðxÞ

U3a3ðx; xÞt3ðxÞdGðxÞ

�

Z
GðxÞ

T3agðx; xÞ

� ½ugðxÞ �Dgkðx; xÞukðQÞ�dGðxÞ

�

Z
GðxÞ

T3a3ðx; xÞ

� u3ðxÞ �D3kðx; xÞukðQÞ½ �dGðxÞ

þ
Dð1� vÞ

2
l2
Z
GðxÞ

T33ðx; xÞdGðxÞ
� �

uaðQÞ

þ
Dð1� vÞ

2
l2uaðQÞ

þ q

Z
GðxÞ

W 3aðx; xÞdGðxÞ ð55Þ

or it can be re-written as

Q3aðxÞ ¼ I7 þ I8 � I9 � I10 þ
Dð1� vÞ

2
l2I11uaðQÞ

þ
Dð1� vÞ

2
l2uaðQÞ þ I12. ð56Þ

Similar to the boundary integral equation for bending
moment each of the integrals in Eqs. (55) and (56) will be
considered as the point x will move to smooth boundary.
Consider Fig. 1 and the relationships in Eqs. (13)–(17)
together with suitable Taylor expansion [4], the following
jump terms can be computed:

I7 )

Z
GðxÞ

U3agðx; xÞtgðxÞdGðxÞ, (57)

I8 ) CPV

Z
GðxÞ

U3a3ðx; xÞt3ðxÞdGðxÞ þ
Q3aðxÞ

4
, (58)
I9 ) CPV

Z
GðxÞ

T3agðx; xÞ

� ½ugðxÞ �Dgkðx; xÞukðQÞ�dGðxÞ

�
Dð1� vÞl2

8
½uaðxÞ � uaðQÞ�. ð59Þ

The integral I10 will be considered in more detail as it
encounters new developments:

I10 ¼

Z
GðxÞ

T3a3ðx; xÞ½u3ðxÞ �D3kðx; xÞukðQÞ�dGðxÞ

¼

Z
GðxÞ

T3a3ðx; xÞ½u3ðxÞ �D3yðx; xÞuyðQÞ�dGðxÞ

þ

Z
GðxÞ

T3a3ðx; xÞ½u3ðxÞ �D31ðx; xÞu3ðQÞ�dGðxÞ ð60Þ

¼ I101 þ I102. (61)

Each of the integrals I101 and I102 will be considered
separately. Note that

D33ðx; xÞ ¼ 1. (62)

The integral I101 will be considered in HFP sense as the
kernel T3a3 is hyper-singular of O(1/r2):

I101 ) HFP

Z
GðxÞ

T3a3ðx; xÞ½u3ðxÞ �D3yðx; xÞuyðQÞ�dGðxÞ

�
Dð1� vÞl2

8
u3;aðxÞ. ð63Þ

It has to be noted that in Eq. (63) the derivative u3,a(Q) is
considered to be zero. From Eq. (19), it can be seen that

D3yðx; xÞ ¼ xyðxÞ � xyðxÞ (64)

which is of O(r), therefore the term D3y in the integral I102
will smooth the kernel T3a3 by one order, then the product
D3y T3a3 will be of O(1/r). Consequently the integral I102
will be considered in Cauchy principal value sense as
follows:

I102 ) CPV

Z
GðxÞ

T3a3ðx; xÞ½u3ðxÞ �D31ðx; xÞu3ðQÞ�dGðxÞ

�
Dð1� vÞl2

8
½u3ðxÞ � u3ðQÞ�. ð65Þ

The integral I11 will lead to the well-known 1
2
jump term:

I11 ) CPV

Z
GðxÞ

T33ðx; xÞdGðxÞ þ �
1

2

� �
. (66)

The integral I12 contains weak singular kernel so it will not
led to any jump term:

I12 ) q

Z
GðxÞ

W 3aðx; xÞdGðxÞ. (67)



ARTICLE IN PRESS

Free edge

Clamped edgex=0

x x

x

x

x

x

3m

x=3(2+π)

x1

x2

Fig. 2. The considered example problem.
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Substituting from Eqs. (57)–(67) into (55) and simplifying,
it gives

1

2
Q3aðxÞ ¼

Z
GðxÞ

U3agðx; xÞtgðxÞdGðxÞ

þ CPV

Z
GðxÞ

U3a3ðx; xÞt3ðxÞdGðxÞ

� CPV

Z
GðxÞ

T3agðx; xÞ½ugðxÞ �Dgkðx; xÞukðQÞ�dGðxÞ

�HFP

Z
GðxÞ

T3a3ðx; xÞ½u3ðxÞ �D3yðx; xÞuyðQÞ�dGðxÞ

� CPV

Z
GðxÞ

T3a3ðx; xÞ½u3ðxÞ �D31ðx; xÞu3ðQÞ�dGðxÞ

þ
Dð1� vÞ

2
l2 CPV

Z
GðxÞ

T33ðx; xÞdGðxÞ
� �

uaðQÞ

þ
Dð1� vÞ

4
l2uaðQÞ

þ q

Z
GðxÞ

W 3aðx; xÞdGðxÞ. ð68Þ

The integral equation in Eq. (68) can be used to compute
the shear force stress resultants at boundary point x. If the
point x is chosen to be Q, Eq. (68) can be re-written as

1

2
Q3aðxÞ ¼

Z
GðxÞ

U3agðx; xÞtgðxÞdGðxÞ

þ CPV

Z
GðxÞ

U3a3ðx; xÞt3ðxÞdGðxÞ

�

Z
GðxÞ

T3agðx; xÞ

� ½ugðxÞ �Dgkðx; xÞukðxÞ�dGðxÞ

�

Z
GðxÞ

T3a3ðx; xÞ

� ½u3ðxÞ �D3kðx; xÞukðxÞ�dGðxÞ

þ
Dð1� vÞ

2
l2 CPV

Z
GðxÞ

T33ðx; xÞdGðxÞ
� �

uaðxÞ

þ
Dð1� vÞ

4
l2uaðxÞ

þ q

Z
GðxÞ

W 3aðx; xÞdGðxÞ. ð69Þ

It can be seen that all HFP integrals vanish. Therefore, this
integral equation can be used on the boundary without any
special considerations.

7. Numerical solution

Eqs. (54) and (69) are implemented into computer
program which uses curved quadratic continuous elements.
The weak singularity is treated using non-linear coordinate
transformation [14] and the CPV integrals are computed
using the proposed scheme in Ref. [9].

It has to be noted that the present formulation will be
used to compute values at the boundary. However, the
traditional BEM formulation [2,3] can be used to compute
values at internal points which were extensively studied
previously by the author in Refs. [2,3].
8. Example problem

In this example the present formulation is used to compute
the boundary stress resultants for the shown semicircular
cantilever slab in Fig. 2. The same problem was previously
considered in Ref. [5] where the boundary stress resultants
were computed using the stress resultant integral equations
technique (SIE) and the shape function derivatives technique
(SFD). The slab thickness is 0.3m, modulus of elasticity is
2100 t/m2, Poisson’s ratio is 0.2. The slab is analysed under
domain loading equal to �0.2 t/m2. In Ref. [5] 10 fully
discontinuous boundary elements were used to discretize the
clamped part of the boundary, whereas 20 discontinuous
elements were used to discretize the free edge part. Herein, the
same discretization were employed but with fully continuous
elements. Discontinuous elements are used at corners.
Figs. 3–7 demonstrate the stress resultants (moments

and shear forces) along the circumference coordinate x (see
Fig. 2). It can be seen that:
(1)
 The SFD technique cannot compute the tangential
component for the bending moment along the clamed
edge (as all generalized displacements are zeros).
(2)
 The present formulation results using the traditional
continuous quadratic elements are very accurate
compared to the SIE technique.
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(3)
 There are some oscillations in the results for the shear
along the free edge in the SFD technique, whereas the
obtained results from the present formulation are
accurate.
(4)
 There are some oscillations in the SIE results near the
corners, whereas the present formulation results are
smooth.
Generally it can be seen that the present formulation
results are accurate and smooth regardless of the type of
the boundary condition. It can be also seen that the
traditional continuous quadratic boundary element is used
without any special consideration.

9. Conclusions

The present paper demonstrated new integral equation
formulation for shear deformable plate bending problems
based on the relative displacement quantities. Such
equations together with the traditional integral equations
can be used easily to compute values anywhere in the plate
problem, i.e. inside the domain (using the traditional
integral equations [2,3]) or on the boundary (using the
proposed formulation). The traditional continuous quad-
ratic element can be used without computation of hyper
singular integrals. An example problem of curved slab was
presented to demonstrate the accuracy of the present
formulation. Corner points will be considered in future
study.
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