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Introduction

» Today, I’ll be presenting a study that applies
advanced machine learning techniques specifically
Artificial Neural Networks and Long Short-Term
Memory models to predict the seismic response of
tall buildings. Due to the complexity and high
computational demands of seismic analysis, this
research introduces a novel approach where each
degree of freedom in a building 1s modeled using a
dedicated neural network. This method, supported
by a genetic algorithm for network optimization,
has been tested on buildings up to 60 floors.
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* The results closely match traditional structural
analysis, offering a more efficient and scalable

solution for seismic prediction in high-rise
structures.
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Thesis objective

* Artificial Neural Networks (ANNSs) continue to face significant challenges in
accurately predicting the seismic response of tall buildings due to the
increasing complexity of structural behavior under ground motion. This
research aims to overcome these limitations by leveraging advanced machine
learning techniques—specifically Long Short-Term Memory (LSTM)
networks—to enhance prediction accuracy and computational efficiency.

 Traditional modeling methods are often time-consuming and computationally
intensive. In contrast, this study proposes a novel approach that utilizes LSTM
networks to streamline the prediction process by capturing the temporal
dependencies of seismic input and structural response data.



Methodology

* A decoupling strategy where in each degree of freedom (DOF) of a structure 1s modeled
using a dedicated ANN. Consequently, a building with n floors will be represented by
3n independent ANNSs, accounting for three translational DOFs per floor. This modular
approach allows for parallel processing and scalability, facilitating more manageable
and precise modeling of complex structural behaviors.

* The implementation leverages LSTM networks to capture temporal dependencies
inherent 1n seismic data, thereby improving the prediction of structural displacements
over time. This technique demonstrates the potential to streamline the seismic response
prediction process, offering a viable alternative to conventional modeling methods.

(Conventional apporach)
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Fig. 1: Conventional approach and proposed approach.



Methodology
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To predict seismic response using Artificial Neural Networks (ANNSs), follow these steps:

1. & Data collection: seismic inputs & responses.
2. ~ ANN architecture design.
3. & Train model on earthquake data.
& . . . .
4. & Optimize using genetic algorithm.
5. 14l Validate predictions on unseen data.
s Targets (known) Estimate (unknown)
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Practical Implementation

* In contrast to many previous studies that mainly relied on theoretical models,
this research employs three real-life tall buildings to assess the performance of
the proposed LSTM-based seismic prediction model. These structures vary in
their structural configurations and are subjected to different seismic excitations
for both training and validation phases.

* To represent a range of building heights, a typical floor plan 1s replicated 10,
20, 40, and 60 times, corresponding to structures of increasing height. Each
floor 1s assumed to have a uniform height of 3.0 meters.

* Before proceeding with the predictive modeling, a verification process 1s
conducted by comparing results from the Finite Element Method (using

ETABS) with those from the Boundary Element Method (using PLPAK),
ensuring the accuracy and consistency of the structural modeling approaches.



Practical Implementation

I. Modeling for practical buildings

( The first tall building

In this example, a rectangular slab T D D i ; 5 .
with overall dimensions of
approximately 30 m x 22.6 m 1s

12

10

considered. The slab is supported by U U o U
several columns distributed - D 1 | j : : R
symmetrically throughout the } | .
structure. Each column appears to be | [] [11°
part of a repeated modular system. L 0 - . ] -
* Consist of: ! b= = D :
1. 33 Columns

1 m I O & I = I— 5

11. 5 Cores

e e e 2
iii. Area about 1592 m Fig. 1 Layout plan for 15T building



Practical Implementation

I.

Modeling for practical buildings
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Fig. 2 (10-story 3D for 1% building)
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Fig. 3 (20-story 3D for 1% building)
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Practical Implementation
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Modeling for practical buildings

I.

Fig. 5 (60-story 3D for 15T building)

Fig. 4 (40-story 3D for 15T building)



Practical Implementation

I. Modeling for practical buildings

] The second tall building

In this example, a slab of irregular
"double-curved" geometry with overall
dimensions of 60.95 m x 30 m 1s
considered. The slab 1s supported on
multiple rectangular columns grouped into
central core zones and peripheral supports.
Column groups in the middle support
potential core walls, while outer columns
support the rest of the slab symmetrically.

§0.95

* (Consist of:

1. 21 Columns

1. 4 Cores
iii.  Area about 1442 m?

Fig. 6 Layout plan for 2P building



Practical Implementation

I. Modeling for practical buildings

Fig. 7 (10-story 3D for 2NP building) Fig. 8 (20-story 3D for 2P building)



Practical Implementation

Modeling for practical buildings
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Fig. 10 (60-story 3D for 2\P building)

Fig. 9 (40-story 3D for 2P building)



Practical Implementation
I. Modeling for practical buildings

 The third tall building

In this example, a rectangular slab of C— 8 — T —
overall dimensions 44 m x 20 m 1s _ ] — = . Sl ]
considered. The slab 1s supported on a R
system of regularly distributed square e = S "X
columns along the perimeter and interior | | G R A
zones. Additional groups of columns are *| | | ° T o e = |
concentrated at the center, forming core | [~ [ S I
areas that may accommodate staircases, || | ’ — ° .
elevators, or service shafts. o — 9 s ]

o —
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* Consist of:

1. 21 Columns
1. 2 Cores

iii. Area about 816 m? Fig. 11 Layout plan for 3RP building



Practical Implementation

I. Modeling for practical buildings
 The third tall building

According to high-rise building design principles, the height-to-width ratio (slenderness
ratio) plays a critical role in structural stability and serviceability. For the studied building,
the plan dimensions are approximately 44 m x 20 m, with the smaller dimension (20 m)
controlling the lateral stiffness. Increasing the number of stories beyond 40 would result in
a total height exceeding 120—130 m, which corresponds to a height-to-width ratio (H/B)

greater than 6.

Therefore, to avoid slenderness-related issues and ensure compliance with serviceability

and stability requirements, the building height in this study is limited to 40 stories.



Practical Implementation
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Modeling for practical buildings

I.

Fig. 13 (20-story 3D for 3RP building)

Fig. 12 (10-story 3D for 3RP building)
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Fig. 14 (40-story 3D for 3RP building)

Modeling for practical buildings
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Practical Implementation

11- Verification
Q, Compare ETABS (FEM) vs. PLPAK (BEM).

0.04

002

-0.02 1

-0.04
——ETABS ——PLPAK

Fig. 15 (REAL DIMENSIONS)

——ETABS ——PLPAK

Fig. 16 (100 mm DIMENSIONS)

L"We used PLPAK because it gave more accurate results, making our training and validation data more reliable." W




Practical Implementation

111- Training generated data

* The training earthquake history which is used for All buildings Building
1,2&3 from 10-store up to 60-store 1s artificial earthquake which consists of

(14770) step and time step between point 0.01 (sec) as shown 1n (Fig.18).

Ground Acc. (m/sec?)

Time step (sec.)

Fig. 18 Training Data for stories above 20-story




Practical Implementation

1v- Validation generated data

* The validation earthquake history which 1s used for All buildings Building
1,2&3 from 10-store up to 60-store 1s artificial earthquake which consists of (5800)

step and time step between point 0.01 (sec) as shown in (Fig.19).

1.50E+00

Ground Acc. (n/sec?)

Time step (sec.)

Fig. 19 Validation Data EQ-92



Practical Implementation

v- Testing generated data

* The Testing earthquake history which is used for All buildings Building
1,2&3 from 10-store up to 40-store 1s EQ-Aqaba 1995 and Turkey 2023 which
consists of (12000, 12500) Point and Time step between point 0.01 (sec) as shown

in (F1g.20).

Ground Acc. (m/sec2)

Time step (sec.)

Fig. 20 Testing Data EQ-Aqaba



Practical Implementation

v- Testing generated data

* The Testing earthquake history which is used for All buildings Building
1,2&3 from 10-store up to 40-store 1s EQ-Aqaba 1995 and Turkey 2023 which
consists of (12000, 12500) Point and Time step between point 0.01 (sec) as shown
in (F1g.20& 21).
1.50E+00
1.00E+00
5.00E-01

0.00E+00

-5.00E-01

Ground Acc. (m/sec2)

-1.00E+00

-1.50E+00

time Step (sec.)

Fig. 21 Testing Data EQ-Turkey 2023



Results

1 The first tall building consists of 10 — stories

 Agaba Earthquake-1995

Displacement (1nm)
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-2.00E-02 U
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Building 01/ 10 Story

4.00E-02

J.00E-D2 n

2.00E-02 W

LO0E-02

0.00E-+HID

(1] i &0

Time step (sec.)

——=PLPAK = =LSTM

Fig. 21 Displacement for 15T building 10-Story
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Results

1 The first tall building consists of 10 — stories

* Turkey Earthquake-2023

Displacement (mam)

¢.00E-02

4.00E-02

2.00E-02

0 DOE+00
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-4, 00E-02

-6 O0E-02
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60

«ePLPAK = <LSTM

Fig. 21 Displacement for 15T building 10-Story
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Results

 The first tall building consists of 20 — stories
 Agaba Earthquake-1995

Displacement (i)

-2.00E-02

-400E-02

Building 01 / 20 Story

§.00E-02

6.00E-02

4.00E-02

2.00E-02

0.00E-+HID

[i1] T8 0

Time step (sec.)

-6.00E-02

—=PLPAK = =LSTM

Fig. 22 Displacement for 15T building 20-Story
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 The first tall building consists of 20 — stories
* Turkey Earthquake-2023

Building 01 / 20 Story

1.50E-01
1.00E-D1
5.00E-02
0 DOE+D0D

1] ¥ LT 1. o T s i | T T [ 4 Bd £ g 1]

-5.00E-02

Displacement (min)

-1LO0E-01 /) \ Time step (sec.)

-1.50E-01

e PLPAK == =L5TM

Fig. 22 Displacement for 15T building 20-Story
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1 The first tall building consists of 40 — stories
 Agaba Earthquake-1995

Displacement (min)

-5.00E-02

-LO0E-01

Building 01 / 40 Story

L50E-01

LODE-01

5.00E-02

0.00E-HD

i1}

Time step (sec.)

-L50E-01

e PLPAK = =[STM

Fig. 23 Displacement for 15T building 40-Story
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1 The first tall building consists of 40 — stories
* Turkey Earthquake-2023

Building 01 / 40 Story
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Fig. 23 Displacement for 15T building 40-Story
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1 The first tall building consists of 60 — stories
 Agaba Earthquake-1995

Displacement (i)

-LO0E-01

-2.00E-01

Building 01 / 60 Story

J.00E-01

2.00E-01

LOOE-01

0.00EHID
(i}

Time step (sec.)

-3.00E-01
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Fig. 24 Displacement for 15T building 60-Story
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1 The first tall building consists of 60 — stories
* Turkey Earthquake-2023

Building 01 / 60 Story

4.00E-01
T.O0E-01

0 D0E+0D

-1.00E-01

Displacement (1)

Tune step (sec.)

-4.00E-01
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Fig. 24 Displacement for 15T building 60-Story



Results

(J_The second tall building consists of 10 - stories

Displacement (mm)
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LOOE-D2
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-LO0E-02

-2.00E-02
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Building 02/ 10 Story

1

e PLPAK = = S5TM

Fig. 25 Displacement for 2NP building 10-Story

Time step (sec.)
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(] The second tall building consists of 20 - stories

Building 02 / 20 Story
3.00E-02
2.00E-02
LOOE-02
0.00E-+00 . / Ny . J 1

61 61 ; : ot . 56 W 67 58 69 ] 1 7 A 3
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ol " b8
Time step (sec.)

-2.00E-02
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-
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Fig. 26 Displacement for 2NP building 20-Story
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The second tall building consists of 40 - stories

Building 02 / 40 Story

2.00E-01
1L.50E-01
LO0E-01
5.00E-02
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b v

-5.00E-02
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Fig. 27 Displacement for 2P building 40-Story



Results

(] The second tall building consists of 60 - stories

Displacement (mn )

-5.00E-02

-1.00E-01
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Building 02 / 60 Story
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Fig. 28 Displacement for 2P building 60-Story
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dThe third tall building consists of 10 - stories

Displacement (i)

4.00E-02

J.00E-02

2.00E-02

LE-02

0.00EHI0
1]

-LODE-D2

-2.00E-D2

-3.00E-02

Building 03/ 10 Story

4 i1 T0 T8 80

Tine step (sec.)

e PLPAK == =|STM

Fig. 29 Displacement for 3R? building 10-Story
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(1 The third tall building consists of 20 - stories

Building 03 / 20 Story
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0.00E-HD
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Time step (sec.)
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e PLPAK = = STM

Fig. 30 Displacement for 3R? building 20-Story
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The third tall building consists of 40 - stories

Displacement (mm)
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Fig. 31 Displacement for 3R? building 40-Story



Conclusions and recommendations work

* This study successfully demonstrated the potential of
Artificial Neural Networks (ANNs) combined with
LSTM to predict the seismic response of tall buildings
efficiently.

* The proposed decoupling approach (using 3N ANNS5)
made the model scalable and suitable for complex high-rise
structures.

* Validation results showed a strong agreement with
traditional methods (ETABS and PLPAK), confirming the
reliability of the model.

* By reducing computation time and maintaining accuracy,
This approach opens the door to smarter, faster, and
safer structural engineering




Thank You

Presented By / Amany Sayed Ali
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