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Importance of CFD

CFD is an important subject in computational mechanics as 
the application of fluid dynamics are so many is our life 
such as:

Applications in  Biomechanics

Applications in climate problems



Navier Stokes equations

Navier Stokes equations for viscous incompressible flow:

Equation of mass conservation (continuity equ.)

ሶ𝒖𝑖,𝑖 x = 0                 𝑖 = 1 → 3     

Equation of momentum (dimensionless)

−𝑝,𝑖 x +
1

𝑅𝑒
ሶ𝒖𝑖,𝑗𝑗 x + ሶ𝒖𝑗,𝑖𝑗 x = ሶ𝒖𝑗 x ሶ𝒖𝑖,𝑗 x +

𝜕 ሶ𝒖𝑖

𝜕𝑡
x

Pressure 

gradient
Convective 

term

Inertia term



Penalty formulations

Eliminate the pressure term assuming 𝑝 x = −𝜆 ሶ𝒖𝑖,𝑖 x

𝜆 must be large enough

Rearranging Navier Stokes equations as follows:

𝝀 +
1

𝑅𝑒
ሶ𝒖𝑗,𝑖𝑗 x +

1

𝑅𝑒
ሶ𝒖𝑖,𝑗𝑗 x = ሶ𝒖𝑗 x ሶ𝒖𝑖,𝑗 x +

𝜕 ሶ𝒖𝑖

𝜕𝑡
x

Comparing to Navier equation for elasticity:

𝜆 + 𝜇 𝑢𝑗,𝑖𝑗 x + 𝜇𝑢𝑖,𝑗𝑗 x = −𝑏𝑖 x +
𝜕𝑢𝑖

𝜕𝑡
x

domain 

term
Inertia term



The analogy between N-S equations and N equations will be as follows:

ሶ𝒖𝑖 x → 𝑢𝑖 x

ሶ𝒖𝑗 x ሶ𝒖𝑖,𝑗 x → −𝑏𝑖 x

1

𝑅𝑒
→ 𝜇

𝝀 → 𝜆



Steady state CFD for 3D problems



Meshless MFS for Single domain

Equation for displacement:

𝑢𝑗 x = ෍

𝑘=1

𝑘=N

𝑈𝑖𝑗
∗ ξ𝑘, x 𝜙𝑖 ξ𝑘 + න

Ω y

𝑈𝑖𝑗
∗ y, x 𝑏𝑖 𝑦 𝑑Ω y

Equation for traction:

𝑡𝑗 x = ෍

𝑘=1

𝑘=N

𝑇𝑖𝑗
∗ ξ𝑘 , x 𝜙𝑖 ξ𝑘 + න

Ω y

𝑇𝑖𝑗
∗ y, x 𝑏𝑖 𝑦 𝑑Ω y

Traction or displacement

  

Γ 

bj(y) 

Body load

Source points ξ 

Field point x

Fictitious boundary
S

Internal point y



The matrix form:

The convective term calculation:

𝑢𝑗,𝑚 s = ෍

𝑘=1

𝑘=M

𝑈𝑖𝑗,𝑚
∗ ξ𝑘, s 𝜙𝒊 ξ𝑘 + න

Ω y

𝑈𝑖𝑗,𝑚
∗ y, s 𝑏𝑖 𝑦 𝑑Ω y

ത𝑢 x 𝟑N1×1

ҧ𝑡 x 𝟑N2×1
=

𝑈∗ ξ, x 𝟑N1×𝟑N

𝑇∗ ξ, x 𝟑N2×𝟑N
𝜙 ξ 𝟑N×1 + 𝑏𝑝 x

𝟑N×1



Treatment of domain integral

Using Monte-Carlo integration technique

න

Ω y

𝑈𝑖𝑗
∗ y, x 𝑏𝑖 𝑦 𝑑Ω y =

Ω

N𝑚
෍

𝑚=1

𝑚=N𝑚

𝑈𝑖𝑗
∗ y𝑚, x 𝑏𝑖 𝑦

Internal point s

Internal point y



Solution procedure:

• Initially compute the matrices .

• Start the loop on the nonlinear term convective 

terms. compute domain term .

• Solve the system of equations and get 𝜙 the get then 

boundary velocity and traction.

• Compute the internal velocity and its derivative.

• Compute the convective term:

𝑏𝑖 𝑦 = K 𝑏𝑖 𝑦
𝑙

+ K − 1 𝑏𝑖 𝑦
𝑙−1

• Compute the difference in results of internal 

velocities.

𝑑𝑖𝑓𝑓 =
𝑢𝑗

(𝑙)
− 𝑢𝑗

(𝑙−1)
100

𝑢𝑗
(𝑙−1)

ത𝑢 x 𝟑N1×1

ҧ𝑡 x 𝟑N2×1
=

𝑈∗ ξ, x 𝟑N1×𝟑N

𝑇∗ ξ, x 𝟑N𝟐×𝟑N
𝜙 ξ 𝟑N×1 + 𝑏𝑝 x

𝟑N×1



Example

Reynolds number 10 and 100

Poisson’s ratio 0.4999999

Relaxation parameter 0.05

Lid driven cavity

u2=1

u1=0, u2=0, u3=0

X

Y

Z

u1=0, u2=0, u3=0

1

1



Re 10        with 10x10x10 MC  

Offset 100%



Re 100     with 14x14x14 MC

Offset 300%



Meshless MFS for multi domain

For each sub domain

Equation for displacement:

𝑢𝒋 x = ෍

𝑘=1

𝑘=N

𝑈𝑖𝑗
∗ ξ𝑘 , x 𝜙𝒊 ξ𝑘 + න

Ω y

𝑈𝑖𝑗
∗ y, x 𝑏𝑖 𝑦 𝑑Ω y

Equation for traction:

𝑡𝒋 x = ෍

𝑘=1

𝑘=N

𝑇𝑖𝑗
∗ ξ𝑘, x 𝜙𝒊 ξ𝑘 + න

Ω y

𝑇𝑖𝑗
∗ y, x 𝑏𝑖 𝑦 𝑑Ω y

Traction or displacement

 1(y) 

Γ 

subdomain2

subdomain1

 2(y)

bj(y) 

Body load

Source points ξ 

Field point x
Fictitious boundary

S

Internal point y



For each subdomain:

𝐹 3Nr×3Nr
= 𝐾 3Nr×3Nr

𝑢 3Nr×1 − 𝐾 3Nr×3Nr
𝑢𝑝

3Nr×1 + 𝐹𝑝
3Nr×3Nr

𝐾 3Nr×3Nr
= 𝐿 3Nr×3Nr

𝑇∗
3Nr×3Nr

𝑈∗ −1
3Nr×3Nr

Assembly:

𝐹𝑁

𝐹𝑈
3N×1

=
𝐾11 𝐾12

𝐾21 𝐾22 3N×3N

𝑢𝑈

𝑢𝑁
3N×1

− 𝐾 3N×3N 𝑢𝑝
3N×1 + 𝐹𝑝

3N×1

Rearrange:

− 𝐾11 0

− 𝐾21 𝐼 3N×3N

𝑢𝑈

𝐹𝑈
3N×1

=
− 𝐼 𝐾12

0 𝐾22 3N×3N

𝐹𝑁

𝑢𝑁
3N×1

+ 𝑏𝑝
3N×1



Example

Reynolds number 10 and 100

Poisson’s ratio 0.4999999

Relaxation parameter 0.05

Lid driven cavity

u2=1

u1=0, u2=0, u3=0

X

Y

Z

u1=0, u2=0, u3=0

1

1



Example

Two vertical subdomain

u2=1

u1=0, u2=0, u3=0

X

Y

Z

u1=0, 

u2=0, 

u3=0

1

1

Z

X

u1=0, 

u2=0, 

u3=0

Subdomain 2

Subdomain 1

u2=1

u1=0, u2=0, u3=0

X

Y

Z

u1=0, u2=0, u3=0

1

0
.5 Z

X

u1=0, u2=0, u3=0

Subdomain 2

Subdomain 1
0
.5

Two horizontal subdomain



Re 10        20x20 BP/face     24x24x24 MC

Offset 0.125 inner and 0.15 outer  for the Vert.

Offset 0.21 for the Horz.



Re 100      20x20 BP/face     24x24x24 MC

Offset 0.125 inner and 0.15 outer  for the Vert.

Offset 0.21 for the Horz.



Unsteady state CFD for 3D problems



Time differencing technique

The N-S equation at time 𝑡 + ∆𝑡:

𝜆 + 𝜇 𝑢𝑗,𝑖𝑗
𝑡+∆𝑡 x + 𝜇𝑢𝑖,𝑗𝑗

𝑡+∆𝑡 x = −𝑏𝑖
𝑡+∆𝑡 x +

𝜕𝑢𝑖
𝑡+∆𝑡

𝜕𝑡
x

Using Houbolt finite difference scheme:
𝜕

𝜕𝑡
𝑢𝑖

𝑡+∆𝑡 =
11𝑢𝑖

𝑡+∆𝑡 − 18𝑢𝑖
𝑡 + 9𝑢𝑖

𝑡−∆𝑡 − 2𝑢𝑖
𝑡−2∆𝑡

6 ∆𝑡

The governing differential equation can be written as 
follows:

𝐿𝑖𝑗𝑢𝑗
𝑡+∆𝑡 x = −𝐵𝑖

𝑡+∆𝑡 x − 𝑏𝑖
𝑡+∆𝑡 x

𝐿𝑖𝑗 = 𝜇 𝛻2 𝛿𝑖𝑗 +
𝜕𝑖𝜕𝑗

1 − 2𝜈
−

11

6 ∆𝑡𝜇
𝛿𝑖𝑗

𝐵𝑖
𝑡+∆𝑡 x =

18𝑢𝑖
𝑡 − 9𝑢𝑖

𝑡−∆𝑡 + 2𝑢𝑖
𝑡−2∆𝑡

6 ∆𝑡



Meshless MFS

Equation for displacement:
𝑢𝑗

𝑡+∆𝑡 x

= ෍

𝑘=1

𝑘=N

𝑈𝑖𝑗
∗ ξ𝑘 , x 𝜙𝑖

𝑡+∆𝑡 ξ𝑘 + න

Ω y

𝑈𝑖𝑗
∗ y, x 𝐵𝑖

𝑡+∆𝑡 y + 𝑏𝑖
𝑡+∆𝑡 y 𝑑Ω y

Equation for traction:
𝑡𝑗

𝑡+∆𝑡 x

= ෍

𝑘=1

𝑘=N

𝑇𝑖𝑗
∗ ξ𝑘 , x 𝜙𝑖

𝑡+∆𝑡 ξ𝑘 + න

Ω y

𝑇𝑖𝑗
∗ y, x 𝐵𝑖

𝑡+∆𝑡 y + 𝑏𝑖
𝑡+∆𝑡 y 𝑑Ω y

Traction or displacement

  

Γ 

bj(y) 

Body load

Source points ξ 

Field point x

Fictitious boundary
S

Internal point y



Fundamental solution for 3D

Governing equation
𝐿𝑖𝑗𝑈𝑗𝑘

∗ ξ, x = −𝛿 ξ, x 𝛿𝑖𝑘

Displacement fundamental solution:
𝑈𝑖𝑗

∗ ξ, x

=
−1

8𝜋𝜇 1 − 𝑣 𝐶1
2 − 𝐶2

2 𝑟3
ቂ

ቃ

𝛿𝑖𝑗  ൣ

൧

𝑒−𝐶1𝑟 − 𝑒−𝐶2𝑟

+ 𝑟 𝐶1𝑒−𝐶1𝑟 − 𝐶2𝑒−𝐶2𝑟 + 𝑟𝐶1
2𝑒−𝐶1𝑟

+ 𝑟,𝑖 𝑟,𝑗 ൣ

൧

−3𝑒−𝐶1𝑟 + 3𝑒−𝐶2𝑟

+ 𝑟 −3𝐶1𝑒−𝐶1𝑟 + 3𝐶2𝑒−𝐶2𝑟 − 𝑟𝐶1
2𝑒−𝐶1𝑟 + 𝑟𝐶2

2𝑒−𝐶2𝑟  

𝐶1
2 =

11

6 ∆𝑡𝜇
 𝐶2

2 =
1 − 2𝜈

2 1 − 𝜈
 𝐶1

2



Treatment of domain integral

Using Monte-Carlo integration technique

න

Ω y

𝑈𝑖𝑗
∗ y, x 𝐵𝑖

𝑡+∆𝑡 𝑦 + 𝑏𝑖
𝑡+∆𝑡 𝑦 𝑑Ω y

=
Ω

N𝑚
෍

𝑚=1

𝑚=N𝑚

𝑈𝑖𝑗
∗ y𝑚, x 𝐵𝑖

𝑡+∆𝑡 y𝑚 + 𝑏𝑖
𝑡+∆𝑡 y𝑚

Internal point s

Internal point y



Solution procedure:

• Initially compute the matrices .

At time step 𝑡 + ∆𝑡
• Compute the time dependent term from previous 

velocities at times (𝑡, 𝑡 − ∆𝑡 and 𝑡 − 2∆𝑡):

𝐵𝑖
𝑡+∆𝑡 x =

18𝑢𝑖
𝑡 − 9𝑢𝑖

𝑡−∆𝑡 + 2𝑢𝑖
𝑡−2∆𝑡

6 ∆𝑡
• Start the loop on the nonlinear term convective 

terms. At step l, compute the total domain term .

• Solve the system of equations and get 𝜙𝑡+∆𝑡 the get 

the boundary velocity and traction.

ത𝑢𝑡+∆𝑡 x
3N1×1

ҧ𝑡𝑡+∆𝑡 x
3N2×1

=
𝑈∗ ξ, x 3N1×3N

𝑇∗ ξ, x 3N2×3N
𝜙𝑡+∆𝑡 ξ

3N×1
+ 𝑏𝑝

𝑡+∆𝑡 x
3N×1



Solution procedure:

• Compute the internal velocity and its derivative.

• Compute the convective term:

𝑏𝑖
𝑡+Δ𝑡 y = K 𝑏𝑖

𝑡+Δ𝑡 y
𝑙

+ K − 1 𝑏𝑖
𝑡+Δ𝑡 y

𝑙−1

• Compute the difference in results of internal 

velocities.

𝑑𝑖𝑓𝑓 =
𝑢𝑗

(𝑙)
− 𝑢𝑗

(𝑙−1)
100

𝑢𝑗
(𝑙−1)



The End

Thanks for your kind attention
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