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Importance of CFD

CFD is an important subject in computational mechanics as
the application of fluid dynamics are so many is our life
such as:

Flow around buildings

Applications in Biomechanics
Applications in climate problems



Navier Stokes equations

Navier Stokes equations for viscous incompressible flow:
Equation of mass conservation (continuity equ.)
iti’i(x)=0 i=1-3

Equation of momentum (dimensionless)

1 /. . . . ou;
= () + - (1500 + (0 ) = (9 ;6 + = (%)
Pressure Convective Inertia term

gradient term



Penalty formulations

Eliminate the pressure term assuming p(x) = —A1; ;(x)
A must be large enough

Rearranging Navier Stokes equations as follows:

1. 1 . SN Ju;
A+ R_e u]"ij(X) + R—eul,]](x) = u]'(X)ui,j(X) + E(X)

Comparing to Navier equation for elasticity:

ou;
A+ wu; (%) + pu; j;(x) = —b;(x) + 6tl (x)
N .
domain Inertia term

term



The analogy between N-S equations and N equations will be as follows:

u; (x) = u;(x)

u;(x)w; j(x) > —b;(x)
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Steady state CFD for 3D problems



Meshless MFS for Single domain

Fictitious boundary
Traction or displacement QA _ /;: « Source points &
s N\
. 7 \ . .
bi(y) Intemal pointy N\ ™ Field point x
s
X

Body load
Equation for displacement: <2

~
~

() = 2 Ui Ge0di(8) + | U0 0bi0)d00)
Q(y)
Equatlon for traction: ’

t<x>—2 G0 + | @ 0b()A00)

Q(y)



The matrix form:
{{ﬁ(X)}lem}

{E(X)}BNle

[[U* (& x) 3N, x3N

[T*(E' X)]BNZXBN] {¢(E)}3N><1 + {bp(x)}Ble

The convective term calculation:

wm® = D Um0+ [ UijmG9b0)d0)
k=1 Q(y)

;r
=



Treatment of domain integral

Using Monte-Carlo integration technique

ternal point s

Internal point

§)
| U5G 0B == Y UG 0b)

Q(y) m=1



Solution procedure:

* Initially compute the matrices .

« Start the loop on the nonlinear term convective
terms. compute domain term .

« Solve the system of equations and get ¢ the get then
boundary velocity and traction.

{{ﬂ(x)}lem} [U* (& xX)]3N, x3N
{t(X)}3Nn,x1 [T7*(&, %) |3N, x3N

« Compute the internal velocity and its derivative.
« Compute the convective term:

)
bi(y) =K(b:(»)) " +K-1) (b;()
« Compute the difference in results of internal

velocities.
(u@ _ u?l‘”) 100

] ] J
diff =~
U;

{Pp®)anxs + {bp (O}, .

(I-1)




Example

Lid driven cavity

u1=0, LI2:0, ll3:0

— U1:O, UZZO, U3:0

Y

<
1

Reynolds number 10 and 100
Poisson’s ratio 0.4999999
Relaxation parameter 0.05




Velocity in z direction

Re 10

with 10x10x10 MC

Offset 100%

0.25
—2— Present 10x10 Bpoint per face
0.2 z‘ =
AN —X— Present 30x30 Bpoint per face
0.15 3 . )
X = = = Present 40x40 Bpoint per face
0.1 \ Beu and Chen [4]
0.05
, /
III 0.2 0.4 0.6 0.8 1
- _ _ X
0.05 T ocation on y axis /
0.1 N /)
N, /’
-0.15 \ Y
\ ™
-0.2 N = =L

)



Velocity in z direction

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

Re 100 with 14x14x14 MC
Offset 300%

Hwar et.al [3]

= = = Presemt _40x40 Bpoint perface

Location on y-axis




Meshless MFS for multi domain

Source points &

Fictitious boundary

Field point
Traction or displacement S pomtx

Internal pomty
~

subdomain2

For each sub domain X
Equatiokp_Lor displacement:

() = Y UjE0niE) + [ Uj0b»)daw)
k=1

Q(y)
Equation for traction:

509 = ) Tyt + | T50050)d00)
k=1

Q(y)



For each subdomain:
[Fl3n.x3N, = [Kl3n.x3n {ulsn.x1 — [K]3n xan {uP }an.x1 + [FPlan x3N,

[K]3n, x3N, = [L]SNFXBNF[T*]BNFXBNF[U*]_lgergNr

Assembly:

{F"} _ K11l [Kq2] {uY} B
{{FU}}3N><1 B [[K21] [KZZ]LNXBN {{uN}}ngl [K]anxan{uP }anxa + {FP }anx1

Rearrange:

—[K11] (O] {u"} [l [Kio] (FN}
[—[K21] [1]]3NX3N {{FU}}3N><1 - [ [0] [Kzz]LngN {{uN}}Ble t b ana



Example

Lid driven cavity

u1=0, LI2:0, ll3:0

— U1:O, UZZO, U3:0

Y

<
1

Reynolds number 10 and 100
Poisson’s ratio 0.4999999
Relaxation parameter 0.05




Example

Subdomain 2 /: P < =
Subdomain 1 —
/: « |
< |
| ] u1=0,
' I u2:05
I | U3=0
11]:0, l :
UQZO, : |
— U3:0
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/) __________________
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// Y
< X

Subdomain 2 1



Re 10 20x20 BP/face 24x24x24 MC
Offset 0.125 inner and 0.15 outer for the Vert.
Offset 0.21 for the Horz.

0.25
Beu and Chen [1]
0.2
0.15 el nl L,
,/ ettt e N = = = Two horizontal subdomains
ot el N
c 0.1 /.. N
0 /" N
© /a . .
O 0.05 e e N A I Two vertical subdomains
©
Y]
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‘5 -0.05 "‘Q Location along y-axis
2 *s
[0 "-\‘ /
= -0.1 N /7
' p
-0.15 N\, vy,
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-0.2 -
-0.25



Re 100 20x20 BP/face 24x24x24 MC
Offset 0.125 inner and 0.15 outer for the Vert.
Offset 0.21 for the Horz.

0.2

0.75 Hwar et.al[2]

R B < b S R Two vertical subdomains

0.05 - = == Tywo horizontal subdomains

-0.05

-0.1

Velocity in z-direction

-0.15

-0.2

-0.25

-0.3



Unsteady state CFD for 3D problems



Time differencing technique
The N-S equation at time t + At:

au_t+At
A+ Wuf P + uufif 00 = =bf () + —— )
Using Houbolt finite difference scheme:
0 11uf*At — 18uf + ouf=At — 2y f—2At
_U't-l_At — l i i i
ot 6 At

The governing differential equation can be written as
follows:
Liju]l:-l_At(X) — _Blp+At(X) _ b;:+At(X)
Lo=p(vre, + 2% s
ij = H Yo1-2v 6Atn Y
t t—At t—2At
BEHE (x) = 18u; —9u; = + 2u;
‘ 6 At




Meshless MFS

Fictitious boundary
S

Source points &

Equation for displacement:

f+At(X)
k=N ¢

= Z Ui B )b (80) + f U (v, ){BFHE(y) + bEHAE (y) }dQ(y)
k=1

Q(y)
Equation for traction:

t+At(X)

z JG0d GO+ [ Ti0[BI ) + b @)daw)

Q(y)



Fundamental solution for 3D

Governing equation
LijUs (&%) = —=6(§,x) 0
Displacement fundamental solution:

UsEn

" 8ru(1 — v)(6% — GO)r3
+7r{Cie " — CLe™C" + rClze‘Cl’"}]

+71,7,; [—3e7G" + 3e7C2"

+71{—=3C,e 1" + 3C,e” 2" —r(,%eC7 + rsze_CZ’”}]]

—Cq71 —CHhT
[511 [e 17— e ™2

11 1—2v
(2=—— 2 :

= 21—y U




Treatment of domain integral
Using Monte-Carlo integration technique

Intemal points

Internal point

| U550 0) + b p)daw)
Q(y) m=N,),

QO
N, Z U o OB (ym) + b2 ()
m m=1



Solution procedure:

* Initially compute the matrices .

At time step t + At

« Compute the time dependent term from previous
velocities at times (t, t — At and t — 2At):

BEH () 18u; — 9uf ™" + 2uf 2%
6 At

« Start the loop on the nonlinear term convective
terms. At step / compute the total domain term .

- Solve the system of equations and get ¢!™*! the get
the boundary velocity and traction.

(mt+ae(x)) y (U7 (& %)]an. x
{{tt+At(X)}::l11 ) [T*(E,x)]jzzsz {¢t+At(E)}3N><1+{b£+At(X)}3Nx1




Solution procedure:

« Compute the internal velocity and its derivative.
« Compute the convective term:

()
b (y) =K (b () + K —1) (b))
« Compute the difference in results of internal

velocities.
| (u]@ _ u}l‘”) 100
dif f = -1
Y

(I-1)




The End

Thanks for your kind attention
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