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Introduction

 The dynamic analysis of plates plays an important role in several

engineering fields, including civil, mechanical, and aerospace
engineering.

* Deriving analytical solutions to the governing partial differential

equations can be complex, numerical methods are essential for
practical applications.

 Numerical methods:
o Finite element method (FEM).

o Boundary element method (BEM).
= Direct method.
" |ndirect method.
= The variational formulation.



Introduction

Dynamic analysis techniques using BEM:
e Static fundamental solution.

e Dual reciprocity method (DRM).

* Time-differencing technique.

* Direct differencing technique:
o Harmonic analysis.
o Time dependent fundamental solution.
o Laplace domain.



Main Objectives & Organization

This research presents an innovative approach to the dynamic analysis of
plate bending problem:s.

The BIEM is used to form stiffness matrix and mass matrix for any arbitrary
shear-deformable plate in bending using innovative technique.

Hence those matrices are used to solve the dynamic equation of motion for
the considered plate as a single super element.

The present formulation is considered for free and forced vibration
analyses.

The developed technique involves boundary discretization plus few internal
discretization to define mass and loading/measurement points.

Several numerical examples are solved to demonstrate the accuracy and
the efficiency of the present formulation.



The Proposed Dynamic Formulation

* To perform the proposed dynamic analysis of an arbitrary plate in bending,
(considered herein as a super plate bending element), it is essential to
extract the proposed super element stiffness matrix and mass matrix.
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The proposed formulation plate geometry.



The Proposed Dynamic Formulation

* The proposed three ways of postulation DOF for an arbitrary plate
bending super element:

a) Discretizing the overall plate  p) Discretizing part of the domain ~ €) Choosing small areas or points
domain into DOF cells. points to define DOF cells. at which DOF are defined.



The Proposed Dynamic Formulation

* The direct boundary integral equation can be presented as follows:

C; (O (®) + j T, (& 0w (0 AT () = j Uy (& 0t (0 AT ()

r'(x) r'(x)

+ ] KaGR6odreo + NZ J, e FL0004)

« By collocating at the center point of each DOF cells, an additional integral
equation could be rewritten:
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* Integral equations can be written in a matrix form as follows:
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The Proposed Dynamic Formulation
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The Proposed Dynamic Formulation

* The proposed derivation of [K]

In order to compute [K], matrix form is used with different stiffness cases. Each stiffness
case involves applying a unit deformation in one of the three degrees of freedom (DOFs) of
the stiffness cell, with domain loading is set to zero.
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Where:

[F]4 represents one load case corresponding to prescribed virtual displacement cases.
3Ngx1 p p gop p

[u]qum contains the prescribed virtual displacement case.



The Proposed Dynamic Formulation

Hence, the stiffness matrix could be computed directly as follows:

3N 3N, 3N, 3N,
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Where:

[F] quXSNq is the required stiffness matrix [K] qux3Nq.



The Proposed Dynamic Formulation

* The proposed derivation of [M]

Mass matrix represents the loads in the stiffness cells when the deformations are
Zero. Consider domain loading as own weight of the plate.
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Where:

{F} 3Ngx1 represents the load vector due to own weight which represents the main diagonal of

the required mass matrix |M q
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The Proposed Dynamic Formulation

q q - -
Once [K]3y xsn, and [M]3y 3N, are established, the rotations are condensed to
extract the matrices [K]N xNg and [M IM ]quchl
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The Proposed Dynamic Formulation

* Free vibration

Consider the plate moving freely. Therefore, the equation of motion will be as
follows:

[K]gquq {u3}3qu1 — wZ[M]quNq {u3}3Nq><1 =0

By computing the eigenvalues (w?), the corresponding natural frequencies can be
determined:

0
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The Proposed Dynamic Formulation

 Forced vibration

Consider the plate subjected to dynamic load p(t), the equation of motion will be as
follows:

[M]gquq {15 ()} angx1 — [K]gquq {us(N}angx1 = {Ps (N} angx1

By using Houbolt scheme, the acceleration could be represented as:

2u5(x) — 5u5 2t (x) + 4ul P (x) — uli(x)

At?
By applying Eqg.10 to the previous plate, the displacement in any point of plate could be
calculated as follows:

q
(Z[M]quNq
At?

i3 (x) =

[K]§QXNQ>{u§<x>}3qu1
(—5u52 (0 + 4uSM) — usMw),
= {P§(X)}3qu1 - [M]gquq ( At2 : )




Numerical Implementation

=

A

/ Input data /

A

Calculate stiffness matrix [K]4 and

3NgX3Ng

H q
mass matrix [M] 3Ngx3Ng

A 4

Free vibration
analysis?

Y

[M]9{u(e)} — [K]1{u(®)} = {p(6)}

A 4

Condensate rotations to result in stiffness
matrix [K]ququ and mass matrix

M1 v,

Displacements at any point [Z_?; - k] {fu@®} ={p@®)}

— 5 u(t—At) + 4 u(t—2At) — u(t—3At)
B [m] { At? }

Free vibration
analysis?

A 4

/ Print {u(t)} /

Calculate frequency f =

AN

A flowchart for the dynamic analysis of a bending plate program.




Numerical Examples

« Example.l Free vibration of rectangular plate with simply
supported along its longitudinal edges and is clamped on the
transversal edges

Rectangular plate 4 x 10 m.

thicknesses 1 m.

E=22 x 10° t/m?.

p=0.245

v=0.3.

Results are compared with analytical solutions from:

o Hashemi, S. H., & Arsanfani, M. (2005). Exact characteristic equations for some
of classical boundary conditions of vibrating moderately thick rectangular
plates. International Journal of Solids and Structures, 42(3-4), 819-853.

o Senjanovic, I, Viadimir, N., & Tomic, M. (2013). An advanced theory of
moaerately thick plate vibrations. Journal of Sound and Vibration, 332(7), 1868-
1880.

o Xing Y., & Liu, B. (2009). Characteristic equations and closed-form solutions
for free vibrations of rectangular Mindlin plates. Acta Mechanica Solida
Sinica, 22(2), 125-136.
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Table 1: Frequencies of the plate in example 8.1, case A.

Frequencies
Method Mesh
1" mode 2% mode 3% mode
10 elemenis — 34 [HIFs 138.26 158.43 18028
40 elements — 165 D{Fs 151.45 17137 20308
FEM-thick pla1e 160 elemenis — 567 DOEFs 153.85 17663 21465
G40 elements — 2061 DOFs 154.41 17802 217.75

2360 elemenis — 0145 DOFs 154.54 17836 218.53

20 elements — 162 D{Fs 180 16 1491.71 20244

B0 elements — 485 DOFs 165.5% 175.53 200

FEM-3ID J20 elements — 1701 DOFs 158.25 17316 205.3%
2560 elements — 10455 DOEs 154.2 IT0LGH 20454

20480 elements — T2171 DOFs 152.75 16949 203.91

Hashemi and Arsanjani
1515176 1693645 20537488
(analytical solution) [36]

senjanovic’ et al. | 27| [50.E543 1673181 2023260
xing and lin |33 [50.8343 167.3181 2023260
x5 DOFs - 48 BEs I65.1568 18EO910M 234 5172
The present formulation 4x10 DOFs - 48 BEs 154.6794  175.5066 2150680
{Full domain Bx20 [MIFs - 43 BEs 1527133 1726100 2129132
discretization) LAl DOF= - 96 BEs I51.6171 1713643 211.2518
2050 DOFs - 96 BEs I51.0668 1708367 210.E032
40y DOFs - 24 BEs [48.1572 1651272 197.0355
G0 DOFs - 24 BEs 1499154 167.8261 2025841

The present formulation
a0y DOFs - 24 BEs [51.0232  169.5314 2061324

{Partial discretization)
119 [HIFs - 48 BEs 151.5332 170.3326 207.8202

160 [MJ1Fs - 48 BEs I51.8497  1TOEHG 2089734




Numerical Examples
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« Example.2 Free vibration of rectangular plate with clamped on
all edges

Rectangular plate 4 x 10 m.

thicknesses 2 m.

E=22 x 10° t/m?.

p=0.245

v=0.3.

Results are compared with analytical solutions from:

o Xing, Y., & Liu, B. (2009). Characteristic equations and closed-form solutions
for free vibrations of rectangular Mindlin plates. Acta Mechanica Solida
Sinica, 22(2), 125-136.
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Table 2: Frequencies of the plate in example 8.1, case B.

Frequencies
Method Mesh
1" mode 2 mode 3 mode
10 elements — 54 D0Fs 174749 191.3 20089
40 elements — 165 DOEs 1895.59 226,25 26972
FEM-thick plate 160 elements — 567 DOFs 20042 236335 276.29
G40k elements — 20891 DOFs 201.62 238.93 27T H
2660 elements — 8019 DOEs 201.82 239 .58 27734
20 elements — 162 DOEs 204.15 208.36 2316
0 elements — 495 DOEs 209.53 231.85 26663
FEM-ID Gl elements — 2835 DOFs 20517 2344 275003
5120 elements — 188189 [Fs 2032 234.14 27708
409460 elements — 136323 D0Fs 202 456 231 841 27T BG4
Xing and Liu |33 1904758 214 8470 260 8TET
225 [MIF=s - 48 BEs 2123518 2533 0886 A16.1474
The present formulation 4x10 DOFs - 48 BEs 204.1458 241.8413 3029049
(Full domain Bx20 DOFs - 48 BEs 201.3464 2377801 206.2242
discretization) 16x40 DOFs - 48 BEs 198.2805 234.8915 293.1798
20=50 DOFs - 96 BEs 194 4376 2316125 2900607
40 DOFs - 24 BEs 1881857 215.7145 254.7044
0 [MIFs= - 24 BEs 19:3.2703 223.T286 26H.T71
The present formulation ) )
90 [MIFs= - 48 BEs 1965612 2200343 2TH.54E9
(Partial discretization)
119 DOFs - 48 BEs 1980042 2301 4433 2831540
L0 DOFs - 48 BEs 19490043 23321492 2866806




Numerical Examples

Example.3 Forced vibration analysis of simply

supported plate t

Dimensions 10 x 10 x 0.5 inches.
E=1x107 psi.

v=0.3.

p=0.259 x 1073 Ib.s?/in*
Heaviside dynamic load P(t) = 300 psi.
uniformly distributed over the entire area of the plate. v

10

At =0.223 x 107% sec.

Results are compared with analytical solutions from: .

o Bauer, H. F. (1968). Nonlinear response of elastic plates to
pulse excitations. Journal of Applied Mechanics, 35(1), 47-52.

10




Present formulation mesh 1
(Full domain discretization)
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Numerical Examples

« Example.4 Forced vibration analysis of simply
supported plate

Dimensions 1 x v/2 x 0.2 inches.
E=1 psi.

v=0.3. =
p=11b.s*/in*.

Heaviside dynamic load P(t) = v2 psi .
uniformly distributed over area 0.4 x 0.4 inches .
At=0.1 sec. v

L
« (0.4 »

« 4 »

Results are compared with analytical solution from:

» Reismann, H. E. R. B. E. R. T., & Lee, Y. (1969). Forced
motion of rectangular plates. Developments in theoretical and
applied mechanics, 4, 3-18.



Present formulation mesh 1 Present formulation mesh 2 Present formulation mesh 3
(Full domain discretization) (Full domain discretization) (Full domain discretization)
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Numerical Examples

« Example.5 plate supporting a pump

A reciprocating pump is mounted at the middle of a steel plate clamped along two edges.
Dimensions 2.5 x0.5 x 0.1 m.

E=2 x 101 N/m?2.

v =0.3. Redorocat
p=7700 kg/m3. Y
Harmonic force, F(t) = 220 sin( 62.832t) N.

At = 1.5625 x 10~ % sec.

01m

Steel plate




Present formulation mesh 3 (Full domain discretization)
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E=2 x 10° t/m?
v=0.2
p=2.5

Numerical Examples

Example.6 Free and forced vibration of a building slab

A practical slab with thickness = 0.2 m and supported on columns with dimensions (0.3x0.3) m
as well as shear walls of dimensions (1.15x0.3) m, (1.85x0.3) m.
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Present formulation mesh 1
(Full domain discretization)

Present formulation mesh 2
(Full domain discretization)
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Case A: Free vibration

Table 6.1 Frequencies of practical slab in example 6.5, case A.

Frequencies

Method Mesh
1tmode  2"d mode 3" mode
1131 DOFs 10.7775 11.3986 16.3449
FEM-thick plate 2268 DOFs 10.6599 11.1946 16.3156
5868 DOFs 11.2047 12.3105 17.5553
The present formulation (Full 108 DOFs - 42 BEs 11.1619 12.2723 16.4481
domain discretization) 372 DOFs - 84 BEs 11.0625  12.1325 16.3161
(20 Col. + 1 point) DOFs - 42 BEs 11.3567 45,7340 46.5292
(20 Col. + 2 point) DOFs - 42 BEs 11.3244 12.4720 454775
The present formulation )

o o (20 Col. + 3 point) DOFs - 84 BEs 11.3731 12.4588 18.0523

(Partial discretization)
(20 Col. + 4 point) DOFs - 84 BEs 11.3604 12.1927 16.8416
(20 Col. + 5 point) DOFs - 84 BEs 11.2448 12.1919 16.3331




Case B: Forced vibration 300 - — — —

The slab is subjected to the dynamic load applied on the hatched area
of dimensions (1.5mx1.5m). The used time step is 0.2 second.
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Conclusions

The proposed formulation is well-suited for analyzing both free and forced
vibrations.

In this formulation, it 1s not essential to discretize the entire domain into cells;
Instead, it is sufficient to use a limited number of points.

The results obtained from the present formulation are in good agreement with the

analytical solutions compared with the results of FEM, whether plate FEM or 3D
FEM.

It requires less computational effort while providing higher accuracy than other
numerical methods, as accurate results can be achieved without the need for a large
number of DOFs or BEs.

This formulation is suitable for practical slab structures, offering efficient and
accurate analysis without requiring huge computational efforts or a high number of
DOFs or BEs.



Recommendations for Future work

Dynamic analysis of post-tensioned slabs.

Walking vibration analysis.

Automated selection of representative mass points.

Dynamic analysis of functionally graded and laminated thick plates.

Analysis of soil-structure interaction and fluid—structure interaction problems.
Incorporation of damping effects into the dynamic BEM framework.
Application in aviation engineering.



Thank you for your
attention

Presented by Nermeen Hesham
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