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Introduction

• The dynamic analysis of plates plays an important role in several 
engineering fields, including civil, mechanical, and aerospace 
engineering. 

• Deriving analytical solutions to the governing partial differential 
equations can be complex, numerical methods are essential for 
practical applications. 

• Numerical methods:

o Finite element method (FEM).

o Boundary element method (BEM).
▪ Direct method.

▪ Indirect method.

▪ The variational formulation.



Introduction

Dynamic analysis techniques using BEM:

• Static fundamental solution.

• Dual reciprocity method (DRM). 

• Time-differencing technique.

• Direct differencing technique:
o Harmonic analysis.

o Time dependent fundamental solution.

o Laplace domain.



Main Objectives & Organization

• This research presents an innovative approach to the dynamic analysis of 
plate bending problems.

• The BIEM is used to form stiffness matrix and mass matrix for any arbitrary 
shear-deformable plate in bending using innovative technique. 

• Hence those matrices are used to solve the dynamic equation of motion for 
the considered plate as a single super element. 

• The present formulation is considered for free and forced vibration 
analyses. 

• The developed technique involves boundary discretization plus few internal 
discretization to define mass and loading/measurement points. 

• Several numerical examples are solved to demonstrate the accuracy and 
the efficiency of the present formulation. 



The Proposed Dynamic Formulation

• To perform the proposed dynamic analysis of an arbitrary plate in bending, 
(considered herein as a super plate bending element), it is essential to 
extract the proposed super element stiffness matrix and mass matrix. 

The proposed formulation plate geometry.
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• The proposed three ways of postulation DOF for an arbitrary plate 
bending super element:

a) Discretizing the overall plate 
domain into DOF cells. 

b) Discretizing part of the domain 
points to define DOF cells. 

c) Choosing small areas or points 
at which DOF are defined.

The Proposed Dynamic Formulation
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• By collocating at the center point of each DOF cells, an additional integral 
equation could be rewritten:

• The direct boundary integral equation can be presented as follows:



The Proposed Dynamic Formulation

• Integral equations can be written in a matrix form as follows:



The Proposed Dynamic Formulation

• The proposed derivation of [K]

In order to compute [K], matrix form is used with different stiffness cases. Each stiffness 
case involves applying a unit deformation in one of the three degrees of freedom (DOFs) of 
the stiffness cell, with domain loading is set to zero.

Where:

𝐹 3Nq×1
𝑞

represents one load case corresponding to prescribed virtual displacement cases.

𝑢 3Nq×1
𝑞

contains the prescribed virtual displacement case.



The Proposed Dynamic Formulation

Hence, the stiffness matrix could be computed directly as follows:

Where:

F 3Nq×3Nq

q
is the required stiffness matrix K 3Nq×3Nq

q
.



The Proposed Dynamic Formulation
• The proposed derivation of [M]

Mass matrix represents the loads in the stiffness cells when the deformations are 
Zero. Consider domain loading as own weight of the plate.

F 3Nq×1
q

=

m1

m2
m3

⋮
m3Nq

M 3Nq×3Nq

q
=

m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 ⋱ 0
0 0 0 0 m3Nq

Where:

F 3Nq×1
q

represents the load vector due to own weight which represents the main diagonal of 

the required mass matrix M 3Nq×3Nq

q
.

.
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The Proposed Dynamic Formulation

Once K 3Nq×3Nq

q
and M 3Nq×3Nq

q
are established, the rotations are condensed to 

extract the matrices K Nq×Nq

q
and M Nq×Nq

q
.



The Proposed Dynamic Formulation

• Free vibration

Consider the plate moving freely. Therefore, the equation of motion will be as 
follows:

K Nq×Nq

q
u3 3Nq×1 −ω2 M Nq×Nq

q
u3 3Nq×1 = 0

By computing the eigenvalues (ω2), the corresponding natural frequencies can be 
determined:

𝑓
ω

2π



The Proposed Dynamic Formulation

• Forced vibration 

Consider the plate subjected to dynamic load p(t), the equation of motion will be as 
follows:

M Nq×Nq

q
ü3
𝑡 (x) 3Nq×1 − K Nq×Nq

q
u3
𝑡 (x) 3Nq×1 = P3

𝑡(x) 3Nq×1

By using Houbolt scheme, the acceleration could be represented as:

ü3
𝑡 (x) =

2 u3
𝑡 (x) − 5 u3

t−∆t(x) + 4 u3
t−2∆t(x) − u3

t−3∆t(x)

∆t2

By applying Eq.10 to the previous plate, the displacement in any point of plate could be 
calculated as follows:
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A flowchart for the dynamic analysis of a bending plate program.
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Numerical Examples

• Example.1 Free vibration of rectangular plate with simply 
supported along its longitudinal edges and is clamped on the 
transversal edges 

Rectangular plate 4 × 10 m.

thicknesses 1 m.

𝐸= 22 × 105 𝑡/𝑚2. 

𝜌= 0.245

𝜐=0.3. 

Results are compared with analytical solutions from:

o Hashemi, S. H., & Arsanjani, M. (2005). Exact characteristic equations for some 
of classical boundary conditions of vibrating moderately thick rectangular 
plates. International Journal of Solids and Structures, 42(3-4), 819-853.

o Senjanović, I., Vladimir, N., & Tomić, M. (2013). An advanced theory of 
moderately thick plate vibrations. Journal of Sound and Vibration, 332(7), 1868-
1880.

o Xing, Y., & Liu, B. (2009). Characteristic equations and closed-form solutions 
for free vibrations of rectangular Mindlin plates. Acta Mechanica Solida
Sinica, 22(2), 125-136.





• Example.2 Free vibration of rectangular plate with  clamped on 
all edges

Rectangular plate 4 × 10 m.

thicknesses 2 m.

𝐸= 22 × 105 𝑡/𝑚2. 

𝜌= 0.245

𝜐=0.3. 

Results are compared with analytical solutions from:

o Xing, Y., & Liu, B. (2009). Characteristic equations and closed-form solutions 
for free vibrations of rectangular Mindlin plates. Acta Mechanica Solida
Sinica, 22(2), 125-136.

Numerical Examples





• Example.3 Forced vibration analysis of simply 
supported plate 

Dimensions 10 × 10 × 0.5 inches.

𝐸 = 1× 107 𝑝𝑠𝑖.

𝜐 = 0.3.

𝜌 = 0.259 × 10−3 𝐼𝑏. 𝑠2/𝑖𝑛4

Heaviside dynamic load P(t) = 300 𝑝𝑠𝑖.

uniformly distributed over the entire area of the plate.

Δt = 0.223 × 10−4 𝑠𝑒𝑐. 

Results are compared with analytical solutions from:

o Bauer, H. F. (1968). Nonlinear response of elastic plates to 
pulse excitations. Journal of Applied Mechanics, 35(1), 47–52.

Numerical Examples



Present formulation mesh 1

(Full domain discretization) 

Present formulation mesh 2

(partial discretization) 

Present formulation mesh 3

(partial discretization) 





• Example.4 Forced vibration analysis of simply 
supported plate 

Dimensions 1 × 2 × 0.2 inches.

𝐸=1 𝑝𝑠𝑖.

𝜐 = 0.3.

𝜌= 1 𝐼𝑏. 𝑠2/𝑖𝑛4.

Heaviside dynamic load P(t) = 2 𝑝𝑠𝑖 .

uniformly distributed over area 0.4 × 0.4 inches .

Δt = 0.1 𝑠𝑒𝑐. 

Results are compared with analytical solution from:

▪ Reismann, H. E. R. B. E. R. T., & Lee, Y. (1969). Forced 
motion of rectangular plates. Developments in theoretical and 
applied mechanics, 4, 3-18.

Numerical Examples



Present formulation mesh 1

(Full domain discretization) 

Present formulation mesh 2

(Full domain discretization) 

Present formulation mesh 3

(Full domain discretization) 



Present formulation mesh 4

(partial discretization) 

Present formulation mesh 5

(partial discretization) 

Present formulation mesh 6

(partial discretization) 





• Example.5 plate supporting a pump

A reciprocating pump is mounted at the middle of a steel plate clamped along two edges.

Dimensions 2.5 ×0.5 × 0.1 m.

𝐸= 2 × 1011 𝑁/𝑚2.

𝜐 = 0.3.

𝜌= 7700 𝑘𝑔/𝑚3.

Harmonic force, F(t) = 220 sin( 62.832 t ) N.

Δt = 1.5625 × 10−4 𝑠𝑒𝑐. 

Numerical Examples



Present formulation mesh 1 (Full domain discretization) 

Present formulation mesh 2 (Full domain discretization) 

Present formulation mesh 3 (Full domain discretization) 





• Example.6 Free and forced vibration of a building slab

A practical slab with thickness = 0.2 m and supported on columns with dimensions (0.3×0.3) m 
as well as shear walls of dimensions (1.15×0.3) m, (1.85×0.3) m. 

𝐸=2 × 106 𝑡/𝑚2

𝜐 = 0.2

𝜌=2.5

Numerical Examples



Present formulation mesh 1 
(Full domain discretization) 

Present formulation mesh 2 
(Full domain discretization) 

The used points in the partial discretization



Case A: Free vibration

Table 6.1 Frequencies of practical slab in example 6.5, case A. 

Method Mesh 

Frequencies 

1st mode 2nd mode 3rd mode 

FEM-thick plate 

1131 DOFs 10.7775 11.3986 16.3449 

 2268 DOFs 10.6599 11.1946 16.3156 

 5868 DOFs 11.2047 12.3105 17.5553 

The present formulation (Full 

domain discretization) 

108 DOFs - 42 BEs  11.1619 12.2723 16.4481 

372 DOFs - 84 BEs 11.0625 12.1325 16.3161 

The present formulation 

(Partial discretization) 

(20 Col. + 1 point) DOFs - 42 BEs 11.3567 45.7340 46.5292 

(20 Col. + 2 point) DOFs - 42 BEs 11.3244 12.4720 45.4775 

(20 Col. + 3 point) DOFs - 84 BEs 11.3731 12.4588 18.0523 

(20 Col. + 4 point) DOFs - 84 BEs 11.3604 12.1927 16.8416 

(20 Col. + 5 point) DOFs - 84 BEs 11.2448 12.1919 16.3331 

 



Case B: Forced vibration

The slab is subjected to the dynamic load applied on the hatched area 
of dimensions (1.5m×1.5m). The used time step is 0.2 second.



• The proposed formulation is well-suited for analyzing both free and forced 
vibrations.

• In this formulation, it is not essential to discretize the entire domain into cells; 
instead, it is sufficient to use a limited number of points.

• The results obtained from the present formulation are in good agreement with the 
analytical solutions compared with the results of FEM, whether plate FEM or 3D 
FEM.

• It requires less computational effort while providing higher accuracy than other 
numerical methods, as accurate results can be achieved without the need for a large 
number of DOFs or BEs.

• This formulation is suitable for practical slab structures, offering efficient and 
accurate analysis without requiring huge computational efforts or a high number of 
DOFs or BEs.

.

Conclusions



• Dynamic analysis of post-tensioned slabs.

• Walking vibration analysis.

• Automated selection of representative mass points.

• Dynamic analysis of functionally graded and laminated thick plates.

• Analysis of soil–structure interaction and fluid–structure interaction problems.

• Incorporation of damping effects into the dynamic BEM framework.

• Application in aviation engineering.

Recommendations for Future work



Thank you for your 
attention

Presented by Nermeen Hesham
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