

Local and non-local damage modelling using Eshelby inclusion theory

By:

Eng. Mohamed Ahmed Kamal

Department of Engineering Mathematics and Physics - Faculty of Engineering – Shoubra – Benha university

- Introduce a new damage modeling using Eshelby theory of equivalent inclusions coupled with direct boundary integral equation for 2D elasticity problems.
- Boundary only discretization is needed, despite of the damage inside the domain.
- A finite-element like stiffness matrix is formed which is obtained directly in a condensed form on the boundary.

Continuum damage mechanics

It is the study of stiffness degradation of the medium under certain load from continuum mechanics point of view

Assumptions:

- **1.** Damage is isotropic and elastic.
- 2. The material is quasi brittle (damage is due to tensile strain only).
- 3. Poisson ratio is assumed constant

Damage Modeling

In Finite element method the problem is straight forward as the domain is discretized

0.0 0.2 0.4 0.6 0.8 1.

- In the Boundary element method the problem is not
- direct as the boundary only is discretized.
- Solution:
- **1-Coupling with Finite element method.**
- **2-Using Subregions**
- **3- Using Cells with applied initial stress or strain**

Eshelby equivalent inclusion theory

Eshelby solves the problem of inhomogeneity by solving the problem as a homogeneous one with a prescribed strain (eigenstrain) applied at the inhomogeneity

Problem with inhomogeneities

Homogeneous problem with equivalent inclusions

$$\{\varepsilon_{im}\}^C = \left[S_{imjk}\right] \left\{\varepsilon_{jk}^o\right\}$$

Elasticity equations

- $\sigma_{ij,j} = 0$ Equilibrium equation
- $\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$ Hook's Law
- With the presence of eigenstrain: $\sigma_{ij,j} = \sigma^o_{ij,j}$ Equilibrium equation

 $\Gamma = \Gamma_u \cup \Gamma_t$

Application of Eshelby theory to direct BEM

Displacement boundary integral equation c_{ii}(ξ)u_i(ξ)

$$= \int_{\Gamma} U_{ij}^*(\xi, x) t_j(x) d\Gamma(x) - \int_{\Gamma} T_{ij}^*(\xi, x) u_j(x) d\Gamma(x) + \sum_{I=1}^{I=NOI} \varepsilon_{jk}^0(x_I) \int_{\Omega_I} \sigma_{ijk}^*(\xi, x_I) d\Omega_I(x_I)$$

• Strain boundary integral equation $\varepsilon_{im}(\xi) = \int_{\Gamma} U^*_{ijm}(\xi, x) t_j(x) d\Gamma(x) - \int_{\Gamma} T^*_{ijm}(\xi, x) u_j(x) d\Gamma(x)$ $\Gamma \qquad 2\Omega^2 + \Omega^2 + \Omega$

Relation between the applied strain and the eigenstrain $\{\varepsilon_{im}\}^{applied} = [ek_{imjk}]\{\varepsilon_{jk}^{o}\}$

- Rearrange the above three equations to be:
 {F} = [K]{u}
- [K] is the stiffness matrix of the damaged domain obtained directly on the boundary (in a condensed form).
- As the elastic properties of the problem changes at each load step so the problem is nonlinear.
- At each load step the system of equations is solved using a nonlinear solution technique.

Actual problem a)

b) Discretized problem

Solution Algorithm:

Fixed-Fixed Beam:

E=247*10⁸ N/m²

$$\begin{split} & \varepsilon_{D} = 0.000067 \text{ a} = 0.7, \text{ b} = 8000 \\ & \textbf{v} = 0.2 \quad \text{width } 0.2 \text{ m} \\ & D(\varepsilon^{*}) = \begin{cases} 1 - \left[\frac{\varepsilon_{D}(1-a)}{\varepsilon^{*}} + \frac{a}{exp(b(\varepsilon^{*} - \varepsilon_{D}))} \right] & \text{if } \varepsilon^{*} \ge \varepsilon_{D} \\ & 0 & \text{if } \varepsilon^{*} < \varepsilon_{D} \end{cases} \end{split}$$

Fixed-Fixed Beam(Damage pattern):

Nonlocal damage

ill-conditioning Mesh dependence

Nonlocal damage

E=21670724658 N/m²

 ϵ_{D} =0.00009 ϵ_{f} =0.005 R=8mm

v=0.2 width=100 mm

$$D(\varepsilon^*) = \begin{cases} 1 - \frac{\varepsilon_D}{\varepsilon^*} exp\left(-\frac{\varepsilon^* - \varepsilon_D}{\varepsilon_f - \varepsilon_D}\right) & \text{if } \varepsilon^* \ge \varepsilon_D\\ 0 & \text{if } \varepsilon^* < \varepsilon_D \end{cases}$$

Damage Pattern:

uy=0.090 mm

0.0 0.2 0.4 0.6 0.8 1.

Present Non-Local Strain uy=0.082 mm

Present Non-Local Damage uy=0.081 mm

E=2*10¹⁰ N/m²

 ϵ_{D} =0.00009 ϵ_{f} =0.007 R=4mm

v=0.2 width=100 mm

Pattern using damage averaging:

Pattern using strain averaging:

Load level = 892.20 N

Comparing inclusion diameters:

The End

Thanks for your kind attention