بسم الله الرحمن الّرحيم

Local and non-local damage modelling using Eshelby inclusion theory

$B y$:

Eng. Mohamed Ahmed Kamal
Department of Engineering Mathematics and Physics - Faculty of Engineering - Shoubra Benha university

- Introduce a new damage modeling using Eshelby theory of equivalent inclusions coupled with direct boundary integral equation for 2D elasticity problems.
- Boundary only discretization is needed, despite of the damage inside the domain.
- A finite-element like stiffness matrix is formed which is obtained directly in a condensed form on the boundary.

Continuum damage mechanics

It is the study of stiffness degradation of the medium under certain load from continuum mechanics point of view

The damage is modeled using damage variable

$$
C_{i j k l}^{D}=(1-D) C_{i j k l}
$$

Assumptions:

1. Damage is isotropic and elastic.
2. The material is quasi brittle (damage is due to tensile strain only).
3. Poisson ratio is assumed constant

Damage Modeling

In Finite element method the problem is straight forward as the domain is discretized

In the Boundary element method the problem is not direct as the boundary only is discretized.
Solution:
1-Coupling with Finite element method.
2- Using Subregions
3- Using Cells with applied initial stress or strain

Eshelby equivalent inclusion theory

- Eshelby solves the problem of inhomogeneity by solving the problem as a homogeneous one with a prescribed strain (eigenstrain) applied at the inhomogeneity locations.

Problem with inhomogeneities

Homogeneous problem with equivalent inclusions

$$
\left\{\varepsilon_{i m}\right\}^{C}=\left[S_{i m j k}\right]\left\{\varepsilon_{j k}^{o}\right\}
$$

Elasticity equations

Application of Eshelby theory to direct BEM

- Displacement boundary integral equation

$$
\begin{aligned}
& c_{i j}(\xi) u_{j}(\xi) \\
& =\int_{\Gamma} U_{i j}^{*}(\xi, x) t_{j}(x) d \Gamma(x)-\int_{\Gamma} T_{i j}^{*}(\xi, x) u_{j}(x) d \Gamma(x)+\sum_{\mathrm{I}=1}^{I=N O I} \varepsilon_{j k}^{o}\left(x_{I}\right) \int_{\Omega_{I}} \sigma_{i j k}^{*}\left(\xi, x_{I}\right) \mathrm{d} \Omega_{I}\left(x_{I}\right)
\end{aligned}
$$

- Strain boundary integral equation
$\varepsilon_{i m}(\xi)=\int_{\Gamma} U_{i j m}^{*}(\xi, x) t_{j}(x) d \Gamma(x)-$
$\int_{\Gamma} T_{i j m}^{*}(\xi, x) u_{j}(x) d \Gamma(x)$

- Relation between the applied strain and the eigenstrain $\left\{\varepsilon_{i m}\right\}^{\text {applied }}=\left[e k_{i m j k}\right]\left\{\varepsilon_{j k}^{o}\right\}$
- Rearrange the above three equations to be:

$$
\{\boldsymbol{F}\}=[\boldsymbol{K}]\{\boldsymbol{u}\}
$$

- [K] is the stiffness matrix of the damaged domain obtained directly on the boundary (in a condensed form).
- As the elastic properties of the problem changes at each load step so the problem is nonlinear.
- At each load step the system of equations is solved using a nonlinear solution technique.

a) Actual problem
b) Discretized problem

Solution Algorithm:

Fixed-Fixed Beam:

$\mathrm{E}=247^{*} 10^{8} \mathrm{~N} / \mathrm{m}^{2}$

$\varepsilon_{D}=0.000067 \mathrm{a}=0.7, \mathrm{~b}=8000$
$\mathrm{v}=0.2$ width 0.2 m
$D\left(\varepsilon^{*}\right)=\left\{\begin{array}{cc}1-\left[\frac{\varepsilon_{D}(1-a)}{\varepsilon^{*}}+\frac{a}{\exp \left(b\left(\varepsilon^{*}-\varepsilon_{D}\right)\right)}\right] & \text { if } \varepsilon^{*} \geq \varepsilon_{D} \\ 0 & \text { if } \varepsilon^{*}<\varepsilon_{D}\end{array}\right.$

Fixed-Fixed Beam(Damage pattern):

$\mathrm{u}_{\mathrm{x}}=0.597 \mathrm{~mm}$
$\mathrm{u}_{\mathrm{x}}=0.577 \mathrm{~mm}$
Intersected pattern
The damage scale (D):

Nonlocal damage

Strain softening

ill-conditioning
 Mesh dependence

Nonlocal damage

Simply supported beam:

$\mathrm{E}=21670724658 \mathrm{~N} / \mathrm{m}^{2}$

$\varepsilon_{D}=0.00009 \quad \varepsilon_{f}=0.005 \quad \mathrm{R}=8 \mathrm{~mm}$
$\mathrm{v}=0.2$ width $=100 \mathrm{~mm}$
$D\left(\varepsilon^{*}\right)=\left\{\begin{array}{cc}1-\frac{\varepsilon_{\boldsymbol{D}}}{\varepsilon^{*}} \exp \left(-\frac{\varepsilon^{*}-\varepsilon_{\boldsymbol{D}}}{\varepsilon_{f}-\varepsilon_{\boldsymbol{D}}}\right) & \text { if } \varepsilon^{*} \geq \varepsilon_{\boldsymbol{D}} \\ 0 & \text { if } \varepsilon^{*}<\varepsilon_{\boldsymbol{D}}\end{array}\right.$

47 BE Intersected pattern 5 mm

Damage Pattern:

$$
\mathrm{u}_{\mathrm{y}}=0.090 \mathrm{~mm}
$$

Simply supported beam

 with notch:
$E=2^{*} 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
$\varepsilon_{D}=0.00009 \quad \varepsilon_{f}=0.007 \quad R=4 m m$
$\mathrm{v}=0.2$ width=100 mm

Pattern using damage averaging:

Pattern using strain averaging:

Comparing inclusion diameters:

The End

Thanks for your kind attention

