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Topics of implementation interest

– Convergence theory and implementation

– Poor conditioning of systems of equations

– Optimal discretization

– Domain decomposition & preconditioners

– Better solvers-Improved truncated-SVD

– High precision arithmetic

– Variable shape parameters

– Front tracking examples



H-scheme and c-scheme combined:

PDEs and boundary conditions

• MQ is a prewavelet (Buhmann & Chui)
• Write MQ as j(x) =[1 +{(x-xj)/cj}

2] 

• xj is the translator
• cj is the dilator, and
• [1 +{(x-xj)/cj}

2]  is rotationally invariant.
•  influences the shape of j(x) .

• MQ cannot be a prewavelet if cj is uniformly 
constant. In addition, the rows of the 
coefficient matrix are nearly identical.



Theoretical convergence and 

implementation

• Maych (1992) showed MQ interpolation and derivative 
estimates converge as:

• O( -|m|) where  0 <  < 1,  =(c/h), and m is the order of 
differentiation,

• Dm = {m1m2…mk}/ {x1
m1x2

m2…xk
mk}, 

• |m| = |m1|+|m2|…+|mk|, h = sup i,j||xi-xj|| (mesh size)

• Higher order differentiation lessens the convergence rate, 
and integration increases the convergence rate.



Goal: Obtain the best accuracy with 

minimal CPU time

• For convergence, we want (c/h)   .

• The h-scheme: refine h, keep c fixed.

• The c-scheme: increase c, use coarse h 

distribution.

• The c-scheme is ideal and most efficient.



Recommend h-scheme practices

• Brute force fine h discretization is a throw-
back to mesh-based FDM,FEM, or FVM.

• High gradient regions require fine h and 
flatter regions require coarse h.

• The local length scale is: ℓ = k |U|/ |U| ,U is 
the unknown dependent variable, k is a 
constant.

• Implementation: adaptive, multi-level local 
refinement are standard well-known tools.



Domain decomposition:  Divide and 

Conquer for the h-scheme

• Iterative Domain Decomposition: Parallel multilevel methods for 
elliptic PDEs (Smith, Bjorsted,Gropp) FEM

• Use overlapping or non-overlapping sub-domains

• For overlapping sub-domains, additive alternating Schwarz is 
fast, yields continuity of function and normal gradient.  

• Smaller problems are better conditioned.

• Non overlapping methods yield higher continuity.

• Parallelization demonstrated by Ingber et al. for RBFs in 3D.



MQ shape is controlled by either cj
2 or 

exponent, 

• j should be “flat” near the data center, 

xj. 

• Recommend using ½ integers  =3/2, 

5/2, or 7/2;  one can obtain analytic 

integrals for j.

• Increasing cj
2 makes j “flatter”.



Plots of 3 different MQ RBFs



FEM relies on preconditioners for large 

scale simulations. 

• Even though FDM, FEM, and FVM have 

compact support, large systems of equations 

easily become ill-conditioned.

• Ill-conditioning can exist for RBFs PDE 

methods.

• Treatment of ill-conditioning will be presented 

in a separate presentation.



The c-scheme: advantages and 

disadvantages

• The c-scheme is very computationally 
efficient

• Unlike low order methods, the C requires 
100 – 1000 less resolution

• The disadvantage is the equation system 
becomes rapidly poorly-conditioned if limited 
to single or double precision.



Neumann Boundary Conditions and loss 

of Accuracy at the boundary

All numerical methods loose accuracy when 

derivatives are approximated.

MQ’s rate of convergence is O(  ),  where  

= cj/h  and  is the order of spatial 

differentiation.

Remedy: Increase   so  >>.



Solid Mechanics problem

• ux = (-P/6EI) (y-D/2)[(2+)y(y-D)]  ;
• uy = (PL/2EI)(y-D/2)2 {x=0, 0 y  D}  1

• {x=L, 0 y  D}   tx = 0,  ty = (Py/2I)(y-D) 2

• { 0 < x < D, y = 0, D}  tx =0,  ty = 0     2,4

• E = 1000,   =1/3, L =12, D = 4,  I= moment of 
inertia, P = applied force

• See Timoshenko and Goodier (1970). 





RMS errors with different solvers
Dirichlet B.C.Neumann B.C.

Boundary 

Type

IT-

SVD
SVDGE

IT-

SVD
SVDGE

Solver 

Method

5.07E-68.38E-51.83E-45.82E-51.47E-21.48E-2ux

5.35E-71.25E-50.23E-43.35E-51.07E-21.27E-2uy

3.18E-59.13E-41.82E-38.38E-54.24E-24.34E-2xx

3.95E-41.03E-21.85E-28.82E-54.07E-23.78E-2yy



Dependency of L2 errors on c (PM=IT-

SVD)



Shear stress at section x =L/2 of the 

beam with Neumann BC and PM=ITSVD



Neumann conditions: Good accuracy with 

IT-SVD scheme and large c2
j

• Figure 4. Error distribution in stress field scattered data interpolation, 

(a) adaptive mesh refinement; 

• (b) Adaptive shape parameter increment



Huang et al, EABE vol 31,pp614-624 

(2007)

• They compared double & quadruple precision 

for the c- and h-schemes.

• For a fixed c & h, tCPU
quad =40tCPU

double

• tCPU
quad (c-scheme) = 1/565tCPU

double(h-scheme ).

• High accuracy & efficiency achieved with c-scheme.



• Its accuracy is impossible to match by 

FEM or FDM.

• In an example solving Poisson equation, 

an accuracy of the order 10-16 is reached 

using a 20x20 grid. 



• Assume that in an initial mesh, FEM/FDM can solve to 
an accuracy of 1%.

• Using a quadratic element or central difference, the error 
estimate is h2

• To reach an accuracy of 10-16, h needs to be refined 107

fold
• In a 3D problem, this means 1021 fold more degrees of 

freedom
• The full matrix is of the size 1042

• The effort of solution could be 1063 fold
• If the original CPU is 0.01 sec, this requires 1054 years
• The age of universe is 2 x 1010 years



Variable cj-Fornberg & Zeuv (2007)

• They chose j =1/cj = 1/cavedj, where dj is the 

nearest neighbor distance at xj.



Boundary condition implementation

• The PDE exists everywhere, but the 

boundary conditions to be unique if the 

problem is well posed

• Allow some points to be slightly outside of  





Implementation recommendations for 

RBF PDEs (9)- MQ shape parameters

Consider the MQ RBF

k(x)=[ 1+ (x – xk )
2/ck

2] (  -1/2) (MQ)

Wertz, Kansa, Ling (2005) show:

1. Let   5/2; asysmpotically MQ is a high 

order polyharmonic spline

2. Let (ck
2)  200(ck

2)\



Comments on Boundary condition 

implementation and convergence

• Just using a equi-distributed set of data 

centers is not sufficient for accurate 

representation of Neumann BCs

• Specifying -kT/n=g can be inaccurate if 

centers inside and outside  are too 

widely separated



Fedoseyev et al.(2002)

• By extending the PDE domain to be 

slightly outside of the boundaries, they 

observed exponential convergence for 

2D elliptic PDEs.



H-scheme- PDE exist everywhere in d, extend 

the domain outside of boundaries

+ boundary points;  * PDE points
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Fornberg & Zuev, Comp.Math.Appl. (2007) Variable j

=1/cj reduces cond.number, improves convergence



Summary of Wertz study

• Using   > ½ produces more rapid 
convergence.

• Boundary conditions make the PDE unique 
(assuming well posedness), hence (cj

2)∂Ω >> 
(cj

2)Ω\∂Ω

• Permitting the (cj
2) on both the ∂Ω and Ω\∂Ω 

to oscillate reduces RMS errors more, 
perhaps producing better conditioning.



Front tracking is simple with meshless 

RBFs

• No complicated mesh cell divisions.

• No extremely fine time steps using above 

method.

• No need for artificial surface tension or

• viscosity.



Sethian’s test of cosine front

• At t=0, flame is a cosine front, separating 

burnt and unburnt gases.

• This front should develop a sharp cusps in 

the direction of the normal velocity.

• Conversely, a front should flatten when it 

faces in the opposite direction.

• The flame front moves by the jump conditions 

in the local normal direction.



Front tracking is very hard with meshes

• Front capturing requires unphysical 
viscosity.

• Complicated problems of mesh unions 
and divisions as front moves in time.

• The tangential front is usually not a 
spline, artificial surface tension and 
viscosity are required for stability.



In 1990, Kansa showed the best 

performance with variable cj
2 ,not a constant. 
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• 2D Vortical turbulent combustion
– 2D infinitely periodic turbulent flame.

– PDEs are hyperbolic, use exact time integration 

scheme, EABE vol.31 577–585 (2007). 

– Flame front is a discontinuous curve at which the 

flame speed is  normal to flame front.

– Two separate subdomains used: burnt and 

unburnt gases, jump conditions for flame 

propagation.
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Turbulent flame propagation studies

• Traditional FDM required 14 hrs on a 

parallel computer to reach the goal time 

of 1.

• Time required for the RBF method to 

reach the goal time of 1 was 23 

seconds on a PC.



Summary

• Use spatial refinement sparingly.

• The variable c2
j = U /U is more stable, accurate 

and better conditioned.

• The IT-SVD projects small singular values into the 
null space.

• Need to investigate Huang et al.’s claim that 
extended precision is indeed cost-effective in 
minimizing total CPU time.

• Hybrid combinations of domain decomposition, 
preconditioning, variable c’s, IT-SVD, & extended 
precision need to be examined.



Efficiency of meshless MQ-RBFs versus 

traditional, long established FDM,FEM, & 

FVM

• CPU time (FDM,FEM, FVM)/discretization pt << 
CPU time(meshless MQ)/discretization pt

• END OF STORY – NO

• BOTTOM LINE – total CPU time to solve a PDE 
problem,  tCPU(RBF) <<tCPU(FEM,FDM,FVM).


