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AN ASPECT OF MATHEMATICS 
 

“The formulation of physical problems reflects the mathematical tools 

available at the time of their development. 

We should visualize mathematics as a set of mental entities that has no 

bounds. Thus, whenever we come across a mathematical problem resulting 

from the modeling of a physical system and the available mathematics are 

not adequate to solve this problem, we should create new mathematics to 

cope with it, instead of simplifying the model of the physical system, so 

that it is amenable to available mathematics.” 

(Katsikadelis 2017) 
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I. Modeling of Physical systems 
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The invention of the differential calculus and the physical laws enabled the 
modeling of the physical systems via differential equations at the first 
instance and then by integral and integrodifferential equations whose solution 
could predict their response. 

This actually 
started with the 
definition of the 
derivative and its 

rules by Leibniz (1675) and the 
statement of the laws of motion by 
Newton (July 5, 1686). 
We remind that Newton stated his laws 
as axioms (Axiomata sive Leges Motus, 
Principia Mathematica) without saying 
anything about how he concluded to 
them. 

n

n
d y
dx

G.W. Leibniz  
(1646–1716) 

Sir Isaac Newton 
1643 - 1727 
(1646 1716)

d (mv) = fdt
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In some recent publications, it has been shown that these laws can be derived 
directly either from Galileo’s experimental data or from Kepler’s laws of 
planetary motion (Katsikadelis, 2015,2018 & 2019) 
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In the last paper is shown that Newton’s law of motion really is of integer order 
differential form, a fact that is very important for the validity of the modeling of 
physical systems based on it. 

Using the derivative and the physical laws (Newton’s law, constitutive equations) 
many differential equations have been derived which describe the response of a system 
in Physics and Engineering. 
 

Many famous scientists and mathematicians dedicated their efforts to derive such 
equations. I mention a few of them, which, of course, are known to all of us. 
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NavierCauchy Saint Venant 

Fermat KirchhoffBernoulli Sofie Germain 

Poisson Euler

Lagrange
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A.1 The fractional derivative and its definitions (Born in 1695) 
Fractional (non-integer order) Derivatives are as old as Calculus. 
Theory of derivatives of non-integer order goes back to G. W. Leibnitz. 
After Leibnitz defined the derivative of integer order, 

 
G.F.A. de L’Hôpital 
(1661–1704) 

G.W. Leibniz 
(1646–1716) 

  

L’ Hôpital asked: 
“What if n  is a fraction, say n =1/ 2 ?” 

Leibnitz answered (30 September 1695) and  
concluded: 

 “Ainsi il s’en suit que 1:2d x  sera égal à 
 2x dx : x ” and added prophetically “Il y a 

de l’apparence qu’on tirera un jour des 
conséquences bien utiles de ces paradoxes, 
car il n’y a guerres de paradoxes sans 
utilité”

n

n
y

x



, n: integer 
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Regarding the meaningful role of FC in modern mechanics 
 

“It would not be excessive to say that simulating physical systems 
using only integer-order derivatives is similar to doing arithmetic 
(algebra) using only integer numbers”. 

(J.T. Katsikadelis, Archive of Applied Mechanics, 2015, pp. 1307–1320) 
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 For 3 centuries the fractional derivative inspired pure theoretical mathematical 
developments useful only for mathematicians. 

 In the last three decays, however, many authors pointed out that fractional 
derivatives are very suitable for the description of real materials and physical or 
social procedures. Thus, fractional derivatives provide an excellent tool for the 
description of memory and hereditary properties of various materials and 
processes as well nonlocal response (fractional elasticity). 

Thus, several research topics gave a boost to revisiting Fractional Calculus for 
modeling the actual systems and the development of efficient numerical methods to 
solve the differential equations. 

There are several definitions of the Fractional Derivative:  

Almost all are of integro-differential form expressed by convolution integrals 

Riemann-Liouville fractional derivative,  
Grünwald-Letnikov fractional derivative, 

Caputo Fractional derivative 
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Riemann-Liouville Definition 
 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
  

J. Liouville 
(1809–1882) 

 

 

G.F.B. Riemann 
(1826–1866) 

: the order ofthefractional derivative
m : int eger a : lower bound

(z) : TheGamma function

 
 

 

z 1 t

0
(z) t e dt, z C complex number

    
t

0
(1) e dt 1

    (z 1) z (z)        (n) n! 1 2 3,...,n the factorial
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   Grünwald - Letnikov definition 
 

 
 
 
 
 
 
 
 
 
 
 

Laplace transform of the R-L Derivative 
 
 

  

k 1

0 t 0 has no direct physical meaD u(t) ning It does not allow to apply initial 
conditions with physical meaning, i.e.  u(0),u (0),u (0),  

t a
h

k
a

h 0 k 0
D u(t) lim h ( 1) u(t kh)

k

 
  

 

 

    
 


  int eger part of xx   

A.K. Grünwald 
1838-1920  

A.V. Letnikov 
1837-1888 

a R LiouvG LetnD u(t) D 
 

   
m 1
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0

k 0
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0 t 0D u(L s U(s) sD u(t) t) 


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Caputo definition (1967) 
A solution to this conflict was proposed by M. Caputo in 1967, who defined a 
fractional derivative allowing the application of initial conditions with physical 
meaning 
 

 
 

 
 

 
Michele Caputo 

Laplace transform of the Caputo derivative 
 

 

(m)t
C 1 m0

1 u ( )D u(t) d
(m ) (t )


 

 
      

(m) (m 1)
C Cm m 1

(m 1)lim D u(t) u (t) lim D u(t) u (t) u (0)  

  
  

1
RL

m )
C

(D u(t) D u(t) m 1 m i ( ) 0f u 0      

(k )
m 1

k 1
c

k 0
L D u(t) s U(s) s , m 1u ( m0)


   



        
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The Caputo Derivative is suitable to apply initial conditions with physical 
meaning, even the FD does not have geometrical meaning  

 

What is the physical meaning of the FD? Long discussion (I. Podlubny, 2002) 

But this shortcoming of the FD had major implications in the development of 
Science:  
      Has Newton’s law of motion delayed the development of Science? 
The integer order derivative allows giving geometrical interpretations to the 
proposed physical models resulting from Newton’s laws. Apparently, this made 
the then revolutionary concepts accessible to the contemporary scientists, 
who were well experienced in geometry. 
 In a sense, the long delay to apply Fractional Calculus may be attributed to 
this fact. 
 We recall that fractional derivatives lack the straightforward geometrical 
interpretation of their integer counterparts. 
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Graphical representation of the FD of a function  
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The generalized Fractional Derivative (Katsikadelis’ definition 2013) 
                                                                                                                                           

 

 

 

 

Generalized fractional derivatives and beyond them. Applications to mechanical systems 

 John t. Katsikadelis 
 

 

 

 

 

 

 

Generalized Fractional Derivatives and their Applications to Mechanical Systems 
John T. Katsikadelis  

 

 

(m)

(m 1)

m uD u(t)
m 1 u




  
 
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The FD: interpolation between 
successive integer order derivatives 

8th German‐Greek‐Polish Symposium 

Goslar, Germany (2013)  

Archive of Applied Mechanics  

Vol.85 pp.1307‐13‐20 1320  (2014)  on line (2014)( 
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This property is used to define new FDs, (GFDs), by the convolution integral 

 

t (m)

0G
(m)

f(t ; ,m)u ( )d m 1 mD u(t)
u (t) m


          
  


 

Is such a definition Possible?  
 
Yes, It is possible if the kernel f(t; ,m)  has the following two properties: 

 

P1:   m 1
f(t; ,m) 1

 
                   P2:   m

L[f(t; ,m)] 1

   

 

These two properties hold 
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Question: 
Can we find (construct) kernel functions that have properties P1 and P2 ? 
Answer:  YES 

TABLE 1 Families of kernels producing generalized FDs (m 1 m  ) 

 f(t; ,m) , ( ( ) 0   , any specified function of   ) L[f(t; ,m)]  

1 ( )( 1 m) (m)

1 1
( )(m 1) 1 t(m)

  


        

 
( )( m 1) 1(m)s
   
  

2 ( )( 1 m) (m)

1 1
( )(m 1) 1 [exp(t) 1](m)

  


         

 ( )s ( m 1) (m)
(s 1)

         
 

 

 

Obviously, both families satisfy the properties 

m 1
f(t; ,m) 1

 
                 

m
L[f(t; ,m)] 1


   
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This definition generates infinite classes of FDs. 

Examples for family#1 ( )( 1 m) (m)

1 1f(t; ,m) ( )(m 1) 1 t(m)
  


 
        

 

Choose     2 k
0 1 2 k( ) c c c c           

                2 k
0 1 2 k( ) exp(c c c c )          

                ( ) sin( )     

For  0 1 (m 1)     

( ) 1    
 

(1)t

G1 0

u ( )1D u(t) d
(t )1




 
       (Caputo FD) 

( ) 1 2        2

(1)t

G2 2 ( 2 )/30

u ( )1D u(t) d
1 ( 2 ) / 3 (t )



 

 
        

( ) sin( )      

(1)t

G3 sin( )/sin(1)0

u ( )1D u(t) d
1 sin( ) / sin(1) (t )


 

 
       
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Let 2u(t) t . Then 

 
2 a

G1
2tD u(t) (3 )


 

  
 

 
22 ( 2 )/3

G 22D 2t
[

u(t
/

)
3 ( 2 ) 3]


  

    
  

 
22. 0.01832aexp(1. )

G3

3a

2
aD u(t)

)
2t

[3 0.01832aex a ]p(1 3

 

  
  

  

What is the usefulness of the Generalized Fractional Derivative? 
 
 
 
 
At first sight the new FDs provide, beside the order   of the FD, any 
number of parameters to better calibrate a physical response. Their 
further usefulness and consequences is subject of investigation 
  

D u(t)

one parameter

1 2 3;c ,c ,...,c
GD u(t)

anynumber of parameters
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Applications of the Fractional Derivative 
Wide application of fractional Calculus in various disciplines the last 3 
decays, which is rapidly increasing 
 Bioengineering (modeling human) 
 Signal processing 
 Social sciences 
 Modeling of dissipative forces 
 Modeling materials with hereditary properties (viscoelasticity) 
 
The description of physical laws (constitutive equations) via fractional 
derivatives leads to differential equations involving derivatives of noninteger 
order 
 
  



____________________________________________________________________________  

Cairo University 
 

J.T. Katsikadelis. “The Fractional Derivative and is Application to Physical Systems 
Lecture presented at the workshop organized by Prof. Youssef Rashed, University of Cairo. 
 

 

25

 
 
 
 
 
 
 
 
 
 
  

II Fractional Differential Equations
a. Constant Order 
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a. Ordinary fractional differential equations 

 

  
1 2 3 n

1 c 2 c 3 c n c

i i 1 n n 1 1

a D u(t) a D u(t) a D u(t) a D u(t) p(t),
a a (t), a 0, 0

   



    

        




 (1) 

Examples: 

Fractional oscillator: 

   c 0 0mu c ku p(t), u(0) u , u(0) uD u       ,    

Fractional Duffing oscillator: 

   c
2

1 2 0 0mu c k u k u p(t), u(0) u , u uu (0)D        ,     

  



____________________________________________________________________________  

Cairo University 
 

J.T. Katsikadelis. “The Fractional Derivative and is Application to Physical Systems 
Lecture presented at the workshop organized by Prof. Youssef Rashed, University of Cairo. 
 

 

27

 

a. Partial fractional differential equations 

 

 ccN(u) D u D u g( ,t)      x .,      , t 0 x ,     0 1, 1 2       (1) 

 B(u) g( ,t)x ,  x  (2) 

  1u( ,0) f ( )x x ,         2u( ,0) f ( )x x ,          , t 0x  (3) 

 

N( ), B( )   :     Linear or nonlinear integer order partial differential operators 
with respect to x,y . 

cD u(t) , cD u(t) : Generalized fractional time derivative of  - and - , which 
represent fractional type damping and inertia forces 
respectively; 
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3. Solution of FDEs 
The theory and analysis of FDEs has been well established. Theorems of existence, 
uniqueness and behavior of the solution of ordinary and partial FDEs have been 
thoroughly investigated by the mathematicians. All this on a theoretical background. 

Excellent books have been published, e.g.,  
On fractional Calculus (Oldham & Spanier 1974, Carpinteri & Mainardi (Eds) 1997)  
On fractional Differential Equations (Miller & Ross 1993; Podlubny 1999; Kilbas et 

al. 2006). 
1. Analytic solutions: 

Due to mathematical complexity the to date solutions are very few and are restricted 
to one dimensional domains, or e.g. 

 Atanackovic, T.M. (2002),  
 Atanackovic, T.M., Stankovic, B. (2002) 
 Katica (Stepanovic) Hendrieh, (2006) 

2. Approximate solutions 

1. Rossikhin, Yu. A. Shitikova, M.V. (2006a), (2006b)  
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3. Numerical solutions: 
3a. The FEM (Finite Element Method); could be possibly (?) employed. There are 

few available solutions for linear problems in the literature. e.g. FEM based 
solution combined with approximate methods to solve the semi-discretized 
fractional evolution equations, e.g 
1 Gaul, L. (1999) 
2 Schmidt, A. & Gaul, L. (2002) 
3 Galucio, A.C., Deu, J. –F. & Ohayon, R. (2004) 

 

3b. The AEM (Analog Equation Method): It works as a general method to solve 
linear and nolinear integer order or fractional order PDEs. This method is based 
on the Principle of the Analogue Equation 
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      ccN(u) D u D u g( ,t)x .,       , t 0x ,          0 1, 1 2  (1) 

 B(u) g( ,t)x ,  x  (2) 

  1u( ,0) f ( )x x ,         2u( ,0) f ( )x x ,          , t 0x  (3) 

Using the Principle of the Analog Equation the IBVP (1), (2), (3) is converted into the substitute 
problem 

 L(u) b( ,t) x ,  , t 0 x  (5) 

 B(u) g( ,t) x ,  x  (2) 

 1u( ,0) f ( )x x ,       2u( ,0) f ( )x x ,         , t 0 x  (3) 

( )L  :   Linear operator with known fundamental solution 

( , )xb t : Fictitious source, unknown in the first instance. 

The linearity of ( )L  and the known fundamental solution ( )v x,y  permits the 
establishment of the integral representation of the solution of (5), e.g. for 4th order 
operator 
 n nu v d [v V(v) v,b( , t) V(u) u M(u) v, M(v)]ds

 
      x ,  , 0 x t  (6) 

 
 

Unknown boundary quantitiesUnknown domain quantity
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Detailed description of the method can be found in the books by J.T. Katsikadelis 
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The AEM for the solution of FDEs has been presented in the papers: 
 

                               

Vol. 89, No. 7, pp. 593 – 608 (2009) 
Numerical solution of multi‐term fractional differential equations 
John T. Katsikadelis 

                                                                                                                                                           
 

The BEM for numerical solution of partial fractional differential equations 
John T. Katsikadelis 

 

Computers and Mathematics with Applications 
Vol.62 pp. 891–901 (2011)
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The developed method for partial FDEs is general and has been employed the last years to solve 
problems of Mathematical Physics and Engineering described by FDEs. A list a publications using 
this method is given below 

Katsikadelis, J.T., Babouskos, N.G. (2010), “Post-buckling Analysis of Viscoelastic Plates with 
Fractional Derivative Model,” Engineering Analysis with Boundary Elements, 34, 1038–1048. 

Babouskos, N.G., Katsikadelis, J.T. (2010), “Nonlinear Vibrations of Viscoelastic Plates of 
Fractional Derivative Type: An AEM Solution,” The Open Mechanics Journal 4, 8-20. 

Nerantaki, M.S and Babouskos N.G. (2010), “Dynamic analysis of inhomogeneous anisotropic 
viscoelastic bodies described with fractional derivative models", International Journal of 
Structural Stability and Dynamics  

Katsikadelis, J.T. (2009), “The fractional Diffusion-Wave Equation in Bounded Inhomogeneous 
Anisotropic Media”, In: Recent Advances in Boundary Elements, 255-276, Springer. 

Katsikadelis J.T. (2009). “Nonlinear Vibrations of Viscoelastic Membranes of Fractional 
Derivative Type”, Proc. BeTeq’09, July 22-24, Athens, Greece. 

Katsikadelis, J.T. (2010), “Nonlinear Resonance of Viscoelastic Membranes of Fractional 
Derivative Type, Proc. 9th HSTAM Conference, July 12-14, Limassol, Cyprus.  

Katsikadelis J.T. (2008). “Fractional Vibrations of Inhomogeneous Membranes”, Proc. 6th GRACM 
Conference, June19-21, Thessaloniki, Greece  
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5. Viscoelastic Structures. -Fractional order differential viscoelastic 
models 

 
 
 
 
 
 
 
 
 
 
 
 

s

s

0E 1E

s

s

0E

1E

s

s

0E

1E

Kelvin-Voigt model and limiting cases 

    0 1(t) E (t) d
dtE (t) 1

  0

    0 1(t) E E 1 (t)

0 1(t) E (t) DE (t)    
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Differential Viscoelastic Models 

Viscoelastic 
Model 

Integer derivative 
type 

Fractional derivative 
type 

Kelvin-Voigt     1
d (t)(t) E (t) E dt      0 1(t) E (t) E D (t) 

Maxwell    0
d (t)(t) b E (t)dt      0(t) bD (t) E (t) 

Zener      1
d db E Edt dt         0 1(t) bD (t) E (t) E D (t)

Multi-element 
 

  
n mk k

k kk k
k 0 k 0

d (t) d (t)p q
dt dt

  

 

   k k
n m

k k
k 0 k 0

p D (t) q D (t) 

D
 is the operator of the fractional derivative of order  .  
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6. Viscoelastic plates and membranes 
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The IBVP for the plate in terms of the displacements 
System of three coupled partial FDEs 

a 4 a a a
c xx c x xy c xy yy

4
x xx xy xy y yy

x x y y

c yK w (N w, 2N w, N w, )

                                                             

KD w (w,

    (b )w, (b )hu hv hw, g( ,t

D N 2w, D

w

N w,

)

D N )     

 

  

     







x  
 

 

 

 

a 2
c x y x x xx yy xy y

a 2
c x

2
x y x x xx yy xy y

x

2
x y y y yy xx xy y

1 2 1D u u, v, ,

1 2 1u u, v, , w, ( w, w, ) w, w,
1 1 1

b 0
Gh

1 2 1v u, v, , w, ( w, w, ) w,

w, ( w, w, ) w, w,
1

u
G

w,
1 1 1

1 1

1D v u, v
1

               

   
     

    






  

   
     



     



 

 
   

 



 y y y yy xx xy y
yb

0
G

2 1, , w, ( w, w, ) w, w,
1 1

v
h G

       











 

Inertia terms

Viscoelastic terms

Inertia terms
Viscoelastic terms

Nonlinear terms
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Boundary conditions on Γ 
 

 

*
n n t t T n

R n n n n

(k) (k) (k)
kT

a a a
c c n n c t t

a
c

a
k c k

Vw N w, N w, k w V or w w on

Mw k w, M or w, w, on

k w T

D V

w 0   or   w

w D N w, D N w,

w at corner k

D Mw

D Tw

   

 



         







    

      

 

 

* *
n n n n

* *
t t t

a
c n

a
c tt

N N or u u on

N N or u

D N

nD N u o

   





   
 

Initial conditions ιn Ω 

1 2

1 2

1 2

w( ,0) g ( ), w( ,0) g ( )

u( ,0) h ( ), u( ,0) h ( )

v( ,0) h ( ), v( ,0) h ( )

 

 

 

x x x x

x x x x

x x x x






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7. Problems resulting from the previously derived plate 
equations and solved using the presented method 

 
7.1 Linear and Nonlinear Quasi-static Analysis of Viscoelastic plates 

7.2 Linear and Nonlinear vibrations of viscoelastic plates 

7.3 Post buckling response of viscoelastic plates 
7.4Linear and nonlinear flutter instability of viscoelastic plates 

7.5Non linear vibrations of viscoelastic membranes 

7.5Large deflections of viscoelastic membranes 

7.6Static and dynamic, Linear and nonlinear 2D viscoelastic problems 
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Load – deflection curves at large time at point 3.5r =  for various values of the order a  
of the fractional derivative and comparison with the elastic post-buckling paths. 
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Example 2. Resonance of a square viscoelastic plate. 

Data Geometry 
 

BCs: 
Simply supported   w Mw 0 , 

(i) movable   x y xyN N N 0 

(ii) immovable   u v w 0  
 

  6 2E 21 10 N/m ,  4 310 kg/m    0.3  
 

Load  zp cos( t) . 
 

N 204  boundary elements and M 137  
internal nodes  
Ritz method to reduce the degrees of freedom 
40 Linear modes for Ritz reduction  

 

0 1 2 3 4
0
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Figure 10: Amplitude-frequency curves for various values of the viscoelastic parameters and for the 
two cases of the inplane boundary conditions (i) movable (ii) immovable (  1). 

 

The maximum deflection is taken at the steady state response. Excitation frequency   53.42 
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The deflection increases and remains bounded due to the nonlinear character of the problem and 
the viscoelastic behavior of the material. 
 

Figure 11: Time history of deflection at the center of the plate for two values of the excitation 
frequency ( 1 56.5 ,  2 55.5 ): (a) elastic material, (b) viscoelastic material (  0.2, 0.01, 

case (ii) ). 
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Figure 12: (a) Time history of the deflection at the center of the plate and (b) phase plane of the 
steady state response of the two stable solutions (  1, 0.001,  52). 
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Example 3. Resonance of a wing form viscoelastic cantilever plate. 

Data Geometry 
 

 0.01mh  

  6 2E 21 10 N/m ,  37550 kg/m ,  
  0.3  
 
Load     0.0001 cos( )zp k t . 

 

 255N  boundary elements and 
M 131 internal nodes  

 
Ritz method to reduce the degrees of 
freedom 
40 Linear modes for Ritz reduction  
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Figure 16: Amplitude-frequency curves for various 
values of the order   of the fractional derivative 

model (  1k  ). 

Figure 18: Time history of the deflection at point A 
for different initial velocities (  3.45 , 1.3k , 

 0.2). 
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Nonlinear Dynamic Response and Resonance of Viscoelastic membranes 

The IBVP for the plate in terms of the displacements 
System of three coupled partial FDEs 

2 2
x y x y x

y

2 2
c x y x y

c yx x y x x y y x

1C{[u, v, (w, w, ) },
2

1C {(u, v, w, w,

1D [u, v, (w, w, )]
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2

D (u, v, w, w, )
2

u p
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Example 4. Resonance of a viscoelastic membrane. 

Data Geometry and discretization 

 a 3, b 1.3  Thickness:  h 0.002m

,   density   3/ h 5000kgr / m , 

Material Constants:    5 2E 1.1 10 kN / m

,   0.3 .  

Prestress   nu 0.2m , tu 0m   

Load:  

    x y z 0p p 0, p p sin( t) 

 
 

            
(1/4) (1/4)1/2 22 2 2r (ab) / (cos / a) (sin / b) (cos / b) (sin / a) ,      0 2  
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Fractional Kelvin-Voigt model   

 
 

Figure 7. Amplitude-frequency curves for various values of the fractional derivative   (  5 ) 
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Figure 8. Amplitude-frequency curves for two values of the fractional derivative   (  1) 
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The fractional Diffusion-Wave Equation 

The IBVP Governing Fractional PDE 
Diff Equation 

           c c xx xy yy x yD u D u Au, 2Bu, Cu, Du, Eu, Fu g( ,t)x            (x,y) , t 0x  

 
   A A( ),B B( ), ,F F( )x x x   

     0 2  and   ( )x ,   ( )x  and g( ,t)x   

BCs  on   

 a bu ( ,t), , k( )u u ( ,t),        x x x m x x   

ICs in   
  1u( ,0) f ( )x x    if     1     or      1 2u( ,0) f ( ), u( ,0) f ( )x x x x   if   1  
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Example 5. The Diffusion wave equation in plane body of arbitrary geometry. 

Data Geometry and discretization 

a 3,  b 1.3 , h 0.002 , 1.7, 0.8     
2 2A (y x 50) / 50   , 

B 2xy / 50 , 2 2C (x y 50) / 50   , 

D E 0   F 0 ; 

5exp( 0.1{ x y })    , 2 2 1/20.4(x y )    
1.7 0.8
c c xx xy yyg D T D T (AU 2BU CU )        

3 5T(t) t t / 6 t / 200    
       2 2 2 22 2U(x,y) a b x / a y / b x / b y / a           

Bcs: u( ,t) 0, x x ,  ICs: u( ,0) 0x , u( ,0) U(x,y)x   

exact solution exactu T(t)U(x,y) . 
(1/4) (1/4)1/2 2 2 2 2r (ab) / (cos / a) (sin / b) (cos / b) (sin / a)             ,      0 2  
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Fig. 11. Fractional Diffusion-Wave Equation. 
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II Fractional Differential Equations
b. Distributed Order 
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The distributed-order fractional derivative 

b p
ca

F[p,D u(t)]dp  

General nonlinear distributed-order fractional differential equation 
ib p

cca
F[p,D u(t)]dp G[t,u(t),D u(t)] f(t)   

F,G : nonlinear functions  

 

Linear distributed-order fractional differential equation 
1.8 0.51.5 p

c0.2

t t(3 p)D u(t)dp 2 , u(0) u(0) 0
ln t
       
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Solution of distributed-order fractional differential equation 
 

       

Numerical solution of distributed order fractional differential equations 
John T. Katsikadelis  

The fundamental idea is to replace the integral by a sum and treat the resulting 
equation a multi-term FDE, e.g. 

 



  p

c(p)D u(t)dp f(t) ,        0 2   (3) 

The initial conditions depend on ceil( ). Thus we have 

  0u(0) u     if   0 1 (4a) 

or 
   0 0u(0) u , u(0) u   if   1 2  (4b) 

Journal of Computational Physics  

Vol.259 pp.11–22 (2014) 
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2.1 Integration interval [0, ]  

Approximating the integral in Eq. (3) with a sum using the trapezoidal rule with K  equal 
intervals we obtain 

  


             
0 1 2 K 1 Kp p p p p0 K

c 1 c 2 c K 1 c cp D u D u D u D u D u f(t)
2 2

,   p / K  (5) 

with 0p
cD u u  and Kp

c cD u D u . 

 
Example: The fractional distributed-order (FDO) oscillator (Katsikadelis, 2014) 
 

     (2) 2u (t) (t) u(t) g(t) (37a) 

      
1 1p p

c c0 0
(p)D dp (p)D udp (37b) 

  u(0) u(0) 0 (37c) 
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Fig. 8 Response of the FDO oscillator in Example 4.4. 

 
Fig. 9. Maximum error versus integration time step h t  in Example 4.4. 

0 5 10 15 20 25 30
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

t
u(

t)

Forced Vibrations, u0=0,  du0/dt=0,    =ap,   =bp,  f(t)=sint,   =1.2 ,  =3

 

 

a=0.1  b=0.1 
exact elastic, el=10

a=0.1  b=0.2

00.010.020.030.040.050.060.070.080.090.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

h=t

m
ax

|u
-e

ex
|



____________________________________________________________________________  

Cairo University 
 

J.T. Katsikadelis. “The Fractional Derivative and is Application to Physical Systems 
Lecture presented at the workshop organized by Prof. Youssef Rashed, University of Cairo. 
 

 

62

 
 

 

 
 
 
 

 

 

 

  

II Fractional Differential Equations
c. Variable Order 
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The fractional calculus has allowed the definition of any order fractional derivative 
(FD), real or imaginary. This fact enables us to consider the fractional derivative to be 
an explicit function of time (explicit VO-FD) or of some other dependent variable 
(implicit VO-FD).  

 
Although the extension from constant-order to VO-FD may seem somewhat natural and 
several systems have been modeled with VO-FD, this idea has been forwarded only very 
slowly [12]. In a sense, this extension may be have been prevented by the difficulty to 
obtain solutions to VO-FDEs.  
Without excluding other types of VO FDs, we adopt the Caputo type VO order FD of a 
function u(t) 

 

 t(t) (t)
0

1D u(t) (t x) udx
[1 (t)]

  
    ,       0 (t) 1, t 0     (2.1) 

 (t )
a 1
limD u(t) u(t)


  ,             (t)

0a 0
lim D u(t) u(t) u


   (2.2) 
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Explicit:  (t)     depends only of time 

Implicit:   [u(t)]   a or [u(t)]      depends on the field function and/or its derivative 

Apparently, the study of the response of systems modelled with VO FDs requires the 
solution of VO-order fractional differential equations. An efficient method is 
described in: Katsikadelis J.T. “Numerical solution of variable order fractional 
differential equations”, arXiv:1802.00519v2 [math.NA]. This method is presented 
concisely 
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Example 1 

Compute the VO-FD of the function 2u(t) t , t [0,1] ,  

                   (i) (50t 49) / 100   ,             (ii) 1 exp( t)    . 

(i) The exact VO-FD is 

 
151 t
100 2t(t) 2 (t)

0

1 1 20000tD (t ) (t x) udx
[1 (t)] [1 (t)] (50t 151)(50t 51)


   

        (1) 

Fig. 2 shows the exact versus the approximate VO FD as computed using Eq. (2.4) and 
the error for h 0.001 . (max(| error|) 9.21514e-4 ) 

(ii) The exact VO-FD is 

 
exp( t) 1t(t) 2 (t)

0

1 1 2exp(2t)tD (t ) (t x) udx
[1 (t)] [1 (t)] exp(t) 1

 
   

       (2) 

Fig. 3 shows the exact versus the approximate VO-FD and the error for h 0.001 ,. 
max(| error|) 4.62050e-05  
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Figure 2.   VO-FD in Example 1 (i). (t) 2D (t ) , (50t 49) / 100    

           
Figure 3.  VO-FD in Example 1 (ii). (t) 2D (t ) , 1 exp( t)     
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3 Linear VO-FD Equations 

3.1. Explicit VO-DF equations 
The solution procedure is illustrated by solving the second order VO-FDE describing the response 
of the oscillator with VO fractional damping 

Example 2. Explicit VO-DF equation 
Solve the initial value problem 

  a(t)
1 2 3 0 0a u a D u a u p(t), u 1, u 10     ,  a(t) d k exp( t)    (1) 

Assume: 2
1 2 3a 1,a 2 ,a     , 0.1 , 5    , p(t) 0  and d,k  as follows: 

 

(i) d 0.9999,k 10e 10   . In this case it is a(t) 1 , hence as anticipated a(t)D u u , and the 
computed solution approximates the exact solution 

 0 0
ex D 0 D

D

u uu exp( t)( sin t u cos t) 
    


, 2

D 1      (2) 

 (ii) d 1e 10,k 1e 10    . In this case, it is a(t) 0 , hence as anticipated a(t)
0D u u u  , and 

the computed solution approximates the exact solution 
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 0 0
ex 0 2

u uu sin t u cos t a
k

    


,      2 3k a a  ,      1k / a   (3) 

 (iii) Solve Eq. (1) for: a 1 ; a 1 exp( t)   ; a 0.8 ;a 0.8[1 exp( t)]   ;a 0.5[1 exp( t)]   . The 
computed results are plotted in Fig. 6. As anticipated, the VO FD yields larger 
displacements than the corresponding constant order FD. 

 

 

u(
t)

u,
t(t)
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Figure 4. Results in Example 2: case (i) 
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Fig. 5 Results in Example 2: case (ii) 

 

     
Fig. 6 Results in Example 2: case (iii) 
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Fig. 7. Spectral radius in Example 2, 0.8[1 exp( )]a t= - - . 
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3.2. Implicit VO-DF equations 
The solution procedure is illustrated by solving the second order VO-FDE describing 
the response of the oscillator with VO fractional damping depending on the velocity 

Example 3 

Solve the initial value problem 

    a(t)
1 2 3a u a D u a u p(t),    a(t) d k tanh(| u |)   (1) 

Assume: 2
1 2 3a 1, a 2 , a     , 0.1  , 2  , p(t) 0 , and 0 0u , u , d,k  as follows: 

 
(i) d 0.9999,k 10e 10    0 0u 0, u 1  . In this case it is a(t) 1 , hence as anticipated 

a(t)D u u  and the computed solution approximates the exact solution (2 ) in Example 
2. This is shown in Fig 8. 

(ii) d 1e 10,k 1e 10    , 0 0u 0, u 1  . In this case, it is a(t) 0 , and the computed solution 
approximates the exact solution (3) in Example 2. This is shown in Fig 9. 

(iii) When 0 0u 0, u 10  , compute the response for: a(t) 1 ; a 1 0.5 tanh(| u |)]  . The 
computed results are plotted in Fig. 10.  
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Fig. 8 Results in Example 3: case (i) 
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Fig. 9 Results in Example 3: case (ii) 
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Fig. 10 Results in Example 3: case (iii) 

 
 

 

 

u(
t)

D
a u(

t)



____________________________________________________________________________  

Cairo University 
 

J.T. Katsikadelis. “The Fractional Derivative and is Application to Physical Systems 
Lecture presented at the workshop organized by Prof. Youssef Rashed, University of Cairo. 
 

 

76

4 Nonlinear VO-FD Equations 
The solution is obtained using the same algorithm as in linear implicit VO FDEs. 

 

Example 4 
The numerical scheme is employed to solve the initial value problem for the fractional 
Duffing oscillator 

  a(t) 3u 0.2D u u u p(t)    ,    a 1 exp( t)     (1) 

 0u 0 ,      0u 0  (2) 

For 
exp( t) 1

2 6 1 2exp((2t)tp(t) 2 t t 0.2
(1 a) exp(t) 1

 

   
  

, Eq (1) admits an exact solution 2
exu (t) t . 

The computed results are plotted in Fig. 11. 
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Figure 11.  Results in Example 4. 
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5 VO-FD Equations with variable coefficients 
So far we have developed the method for the solution of VO FDEs with constant 
coefficients. Obviously, if the coefficients 1 2 3a ,a ,a  are functions of the independent 
variable t , the previously described solution procedures remain the same except that 
the coefficients 1 2 3a ,a ,a  are evaluated in each step. In the following, the effectiveness 
of the method is demonstrated by solving the initial value problem in the example bellow 

Example 5 

Solve the VO FDE  
 a2 1/2 tD u(1 t )2 0.1t (10 e )u p(t)     ,      a(t) 1 0.5exp( t)    (1) 

 0 0u 1, u 1   (2) 

For 2 1/2 t tp(t) [(1 t ) 0.01t ( (1 a,0) (1 a,t)) / (1 a)) (10 e )]e            , Eq (1) admits an exact 
solution t

exu (t) e . The computed solution is plotted in Fig. 12 as compared with the 
exact one. 
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Figure 12.  Results in Example 5. 
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 The fractional derivatives enable the representation of physical systems with 
models approaching their actual response. 

 Several fractional derivatives have been proposed. However, those permitting 
the application of physical initial and boundary conditions are preferable. 

 Integer order derivatives have in some sense prevented the development of 
science. 

 Variable order fractional derivatives provide a promising means of describing 
real world. It seems that we can circumvent phenomena resulting from the use 
of integer and constant order fractional Calculus. 

 Simple and Robust Numerical methods for the solution of VO FDEs have 
developed for treating realistic physical problems. 

 It would be interesting to develop a new description of the geometry based on 
the fractional derivative and investigate the response of the Universe via 
fractional formulation of the equations of general relativity. 
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