

Three-days workshop on Applications of BEM in Cultural Heritage and Structural Engineering Industry

Numerical Modeling and System Identification of a Historic Masonry Structure in Historic Cairo using Dynamic Investigation Tests

MSc thesis by

Eng. Ahmad Reda, TA at Structural Engineering Department, Cairo University

Under supervision of Prof. Sherif Mourad and Prof. Adel El-Attar Structural Engineering Department, Faculty of Engineering, Cairo University

Interdisciplinary approach for the management and conservation of UNESCO World Heritage Site of Historic Cairo. Application to Al-Ashraf Street

ICONIC project (ID: 30799)

Imperial College London

Contents

- 2. Fatima Khatun Mausoleum
- 3. The Initial Model
- 4. Dynamic Investigation
- 5. Regression Analysis
- 6. The Final Model
- 7. Conclusion

T1: Site management

- Review and update GIS
- Waste management proposals
- Proposals for re-use of empty lands

T2: Site archaeological conservation

- Documentation of site's historical structures with symptoms of damage
- Investigating causes of damage of site's historical structures
- Archaeological conservation and maintenance plans

T2: Site archaeological conservation

جامعة القاهرة

T3: Structural assessment (territorial scale)

- On site survey and definition of typologies
- Identification of local mechanisms of collapse
- Implementation of fragility curves

T4: Structural assessment (single structure scale)

• Application to Fatima Khatun and Al-Ashraf Khalil Mausoleums

T3: Structural assessment (territorial scale)

حامعة القاهرة

T5: SHM

- Static and dynamic monitoring systems
- Continuous processing and evaluation of the systems
- Continuous correlation between the systems

T6: Experimental campaign

- Testing 2 specimens replicating original dry condition
- Testing 2 specimens replicating damp condition
- Testing 2 specimens replicating strengthened condition

T6: Experimental campaign

T7: Groundwater

- Studying topography and geology of the street
- Hydro geochemical study of water
- Groundwater modelling

جامعة القاهرة

T8: Interdisciplinary approach

- Site management guidelines
- Site conservation guidelines

T7: Groundwater

The proposed tile drain location along Al-Ashraf street in3D

Fatima Khatun Mausoleum

• Scope

- Characterization of construction materials
- Creating 3D numerical model
- Dynamic identification tests
- Numerical model updating
- Seismic analysis

Fatima Khatun Mausoleum

Historical background

- Located at Al-Ashraf street
- Built in year 1284

Resources

- Visual Inspection
- Old documents
- Megawra conservation studies

• Geometry

Macro modeling using solid elements

• SAP2000 model

ANSYS model

Material review

Parameter	Masonry Type	FEMA 356	Eurocode 6	Italian 617	ECP 204	
Specific gravity	Limestones	-	-	$\gamma_{avg} = 2.14$	$\gamma_{light} = 1.76 - 2.16$ $\gamma_{med.} = 2.16 - 2.56$ $\gamma_{dense} > 2.56$	
	Solid Bricks	-	-	$\gamma_{avg} = 1.835$	$\gamma_{min} = 1.6$	
Masonry	Limestones	Good = 8 $F_{air} = 5.2$ $f_{\rm m} = 0.45 \times f_b^{0.85} \times 1.25$		$f_m = 2.6 - 3.8$	-	
strength (MPa)	Solid Bricks	Poor = 2.7	$f_m = 0.75 \times f_b^{0.85} \times 1.25$	$f_m = 2.4 - 4$	-	
Young's	Limestones	$E = EE0 \times f$	$E = 1000 \times f$	E = 1500 - 1980	-	
Modulus (MPa)	Solid Bricks	$E = 550 \times J_m$	$E = 1000 \times J_m$	E = 1200 - 1800	-	
Choore Madulus	Limestones	$C = 0.4 \times E$	$C = 0.4 \times E$			
Shear Woudius	Solid Bricks	$-0^{-}-0.4 \times L$	$G = 0.4 \times L$	$G = \frac{1}{3} \times E$	-	

The Initial Model Material testing

• Material testing

Parameter		Specific Gravity	,	Compressive strength (MPa)				
Masonry Type	Limestones	Old Bricks	New Bricks	Limestones (Cubes)	Limestones (Cylinders)	Old Bricks (Cubes)	New Bricks (Cubes)	
Sample 1	1.99	1.1	1.73	15.5	10.1	3.26	19.4	
Sample 2	2.05	1.07	-	20.5	10.5	7.65	13.3	
Sample 3	2.09	-	-	15.4	15.4 11.1		14.6	
Sample 4	2.02	-	-	-	-	6.2	-	
Sample 5	2.02	-	-	-	-	7.15	-	
Sample 6	-	-	-	-	-	5.67	-	
Average	2.034	1.085	1.73	17.15	10.54	5.48	15.75	
Normalised		-		14.58	11.59	4.66	13.39	
f _m		-		5.5	4.5	3.5	8.5	

Selected material properties

حامعة القاهرة

- Inputs
 - $-E = 300 \times f_m$
 - -v = 0.25
 - Foundation is hinged to ground
 - Attached school is not modeled

Gravity analysis

- Overall weight of the structure (14,400 kN)

- Stresses on foundation level (Max stress = 0.52 MPa in the corner)

Modal analysis

Mada Nama			Difference (9/)	Participation mass ratio			
	SAP2000 (HZ)		Difference (%)	X direction	Y direction	Rotation Z	
Wall Bending	5.3262	5.3207	0.103%	0.003	0	0	
Translational X	5.7653	5.7598	0.095%	0.62	0.05	0	
Translational Y	5.8710	5.8653	0.096%	0.055	0.62	0.002	
Corner Bending	6.4885	6.4877	0.012%	0.006	0.008	0	
Torsion	8.9883	8.9817	0.073%	0.001	0.001	0.73	

The Initial ModelModal analysis

جامعة القاهرة

The Initial ModelModal analysis

جامعة القاهرة

The Initial ModelModal analysis

Experimental setup

• Experimental setup

مامعة القاهرة

Signal processing

- Peak picking method (In frequency domain)
- Welch estimator using default values (pwelch function in MATLAB)

- Signal processing
 - Harmonic excitations

- Verified by ARTeMIS Modal software

- Signal processing
 - Window size is **20 sec**
 - Each direction is separated
 - Measurements comparison

• Signal processing Mode Shapes

32 Three-days workshop on Applications of BEM in Cultural Heritage and Structural Engineering Industry

3000

• Signal processing Results

- Soil modeling
 - Borehole No. 5 (Housing Ministry report)
 - Analysis by Assistant Professor Asmaa Hassan

Formation	End depth (From normal land)
Fill (clayey silt and rock fragments)	11
Hard Silty clay, interlayers of rock (q _u >4)	18
Limestone/Sandstone, interlayers of silty clay	30

- Applying Gazeta's equation using Winkler model (Site class E): $k_v = 685 \cong 700 N/mm$ $k_h = 514 \cong 500 N/mm$

• Attached wall modeling

- Contact length = 4 m
- Linear springs model

$$k = \frac{F}{\Delta L} = \frac{1}{\Delta L}$$

$$k_w = 16,500 \text{ N/mm}$$

• Strategy

$$X = \begin{bmatrix} E \\ v \\ k_v \\ k_h \\ k_w \end{bmatrix} \gg f(X) \gg M = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \end{bmatrix}$$

- Get f(X) using nonlinear fitting techniques

- Knowing M, solve for X using a minimization algorithm

• Neural network fitting (MATLAB app)

- Input (5x50 Models)
- Output (5x50 Models)

Create the network

- Train (45 Models)
- Test (5 Models)

Use the network

- Create database
- Sensitivity analysis
- Solve for *X*

• Neural network regression

• Neural network database ($20^3 = 8000 \mod 1$)

	Input							Output		
ID	E (× f_m)	υ	k _v (N/mm)	k _h (N/mm)	k _w (N/mm)	<i>f</i> ₁ (<i>Hz</i>)	f ₂ (Hz)	f ₃ (Hz)	f ₄ (Hz)	f ₅ (Hz)
3994	581.1	0.25	700,000	500,000	194,564	7.209	7.367	7.986	9.022	12.532
3995	581.1	0.25	700,000	500,000	277,843	7.215	7.376	7.997	9.062	12.576
3996	581.1	0.25	700,000	500,000	396,768	7.220	7.383	8.006	9.100	12.618
3997	581.1	0.25	700,000	500,000	566 <i>,</i> 596	7.224	7.388	8.013	9.137	12.659
3998	581.1	0.25	700,000	500,000	809,115	7.228	7.392	8.018	9.174	12.700
3999	581.1	0.25	700,000	500,000	1,155,439	7.231	7.394	8.024	9.210	12.739
4000	581.1	0.25	700,000	500,000	1,650,000	7.234	7.395	8.028	9.244	12.779
4001	642.9	0.25	70	50	1,894	7.173	0.978	1.375	6.867	10.972
4002	642.9	0.25	70	50	2,705	7.155	0.946	1.473	6.878	11.011
4003	642.9	0.25	70	50	3,863	7.140	0.919	1.575	6.892	11.053
4004	642.9	0.25	70	50	5,517	7.126	0.895	1.681	6.909	11.098
4005	642.9	0.25	70	50	7,878	7.115	0.876	1.791	6.929	11.146
4006	642.9	0.25	70	50	11,250	7.105	0.861	1.904	6.951	11.197
4007	642.9	0.25	70	50	16,066	7.098	0.851	2.020	6.977	11.250

Final Model

• Database filtration

Mada Nama	Frequency (Hz)						
	Selected	Min.	Max.				
Translational X	2.686	2.65	2.75				
Translational Y	3.6	3.3	3.9				
Torsion	9.65	8.5	10				

	Input					Output					
ID	E (× f_m)	υ	k _v (N/mm)	k _h (N/mm)	k _w (N/mm)	<i>f</i> ₁ (<i>Hz</i>)	f ₂ (Hz)	f ₃ (Hz)	f ₄ (Hz)	f ₅ (Hz)	
2556	395.4	0.25	973.3	695.2	396,768	5.637	2.679	3.604	5.922	9.382	
2557	395.4	0.25	973.3	695.2	566,596	5.643	2.695	3.627	5.949	9.412	
2558	395.4	0.25	973.3	695.2	809,115	5.649	2.711	3.646	5.976	9.441	
2559	395.4	0.25	973.3	695.2	1,155,439	5.655	2.727	3.660	6.002	9.468	
2560	395.4	0.25	973.3	695.2	1,650,000	5.660	2.743	3.668	6.027	9.492	
2953	457.3	0.25	973.3	695.2	136,247	6.061	2.654	3.607	6.242	9.952	
2954	457.3	0.25	973.3	695.2	194,564	6.067	2.665	3.652	6.271	9.992	

Final Model

- $-E = 400 \times f_m$
- -v = 0.25
- $-k_{v} = 1000 \, N/mm$
- $-k_h = 700 N/mm$
- $-k_w = 400,000 N/mm$

	Input					Output				
Model	$E \\ (\times f_m)$	υ	k _v (N/mm)	k _h (N/mm)	k _w (N/mm)	<i>f</i> ₁ (<i>Hz</i>)	f ₂ (Hz)	f ₃ (Hz)	f ₄ (Hz)	f ₅ (Hz)
NN	395.4	0.25	973.3	695.2	396,768	5.637	2.679	3.604	5.922	9.382
ANSYS	400	0.25	1,000	700	400,000	5.706	2.668	3.621	6.020	9.534
Exp.			-			-	2.686	3.6	-	9.65
Diff. (%)			-			-	-0.7%	0.6%	-	1.2%

Final Model

- $-E = 400 \times f_m$
- -v = 0.25
- $-k_{v} = 1000 \, N/mm$
- $-k_h = 700 N/mm$
- $-k_w = 400,000 N/mm$
- Expected parameters
 - $-E = 300 \times f_m$
 - -v = 0.25
 - $-k_v = 700 \, N/mm$
 - $-k_h = 500 \, N/mm$
 - $-k_w = 16,500 N/mm$

Conclusion

Modelling notes

- $E_{stone} = 2200 MPa$, $E_{old \ bricks} = 1400 MPa$, $E_{new \ bricks} = 3400 MPa$
- Italian code provisions are conservative and acceptable
- SSI is a governing parameter
- Using horizontal soil stiffness as 10% of vertical soil stiffness is not always the case
- The attached wall is inter-connected with other walls

• System identification notes

- Taking several measurements at different times is useful during analysis
- Vertical channels are important to detect soil vibrations
- Sensors' setup was not enough to capture all mode shapes
- Neural network fitting is an effective tool for model updating

Conclusion

• Recommendations

- Avoid harmonic excitations from neighboring environment
- Problems associated with stiff structures during ambient vibrations

• Future work

- Soil modeling effect on model updating
- Seismic assessment
- Dewatering effects
- Structural health monitoring

